
From the Institute of Information Systems
of the University of Lübeck

Director: Prof. Dr.-Ing. Nele Rußwinkel

Toward better
Subjective Content Descriptions:

A Spiral of Estimation, Enrichment, Usage,
and Improvement

Dissertation
for Fulfilment of
Requirements

for the Doctoral Degree
of the University of Lübeck

from the Department of Computer Sciences and Technical Engineering

Submitted by

Magnus Bender
from Lübeck

Lübeck 2024

First referee: Prof. Dr. rer. nat. habil. Ralf Möller
Second referee: Prof. Dr. rer. nat. Diedrich Wolter
Date of oral examination: October 2, 2024
Approved for printing. Lübeck, October 18, 2024

Abstract

In today’s modern world, humans not only interact with each other, but also with
various intelligent systems, which are composed of artificial agents acting on behalf
of human principals. Natural language is the most intuitive form of human commu-
nication, and the assumption is that humans would like to apply natural language
when interacting with agents. However, despite recent advances in human-machine
interaction, natural language processing is known to be quite complex for machines
and difficult to realize effectively.

In this dissertation, the goal is to enable agents to communicate with humans about
natural language texts while considering the context a human principal is working in.
To achieve this goal, today’s services such as standard Information Retrieval (IR) or
Large Language Models (LLMs) are not sufficient. In this dissertation, we consider
“comments” attached with text documents in the corpus. These “comments” might
have no direct grounding in the base text, but indeed involve the context of prin-
cipals. If “comments” are formulated in natural language, a human principal can
easily be pointed to relevant documents and, in those documents, to paragraphs or
sentences that are relevant for the context, e.g., a new scientific problem the human
is working on.

The “comments” attached with text documents are considered to be subjective be-
cause it is the context, not only the base text, that matters for the interpretation
of comments. Thus, we call the above-mentioned “comments” Subjective Content
Descriptions (SCDs). A principal can specify the context in two ways, first using
SCDs associated with the corpus, and second as part of queries to the agent. An-
other advantage of using SCDs for text understanding is that techniques using SCDs
require less computational resources than LLMs and run efficiently on off-the-shelf
hardware.

This dissertation contributes techniques required by an SCD-based IR agent. Such
an agent is characterized by the ability to consider the context and subjectivity of
its principals. First, for a corpus, an initial set of SCDs including labels needs
to be estimated by the agent. Afterwards, the SCDs need to be improved, e.g.,
by human feedback. Updating SCDs is also necessary if the context or principal
changes. Finally, we consider relations between SCDs, e.g., complementarity. We
define how to measure complementarity of SCDs and enable the IR agent to use
complementarity.

iii

Kurzfassung

In der heutigen Welt interagieren Menschen nicht nur miteinander, sondern auch
mit intelligenten Systemen, die aus Agenten bestehen und im Auftrag von Men-
schen handeln. Natürliche Sprache ist die intuitivste Form menschlicher Kommu-
nikation, und es ist anzunehmen, dass Menschen bei der Interaktion mit Agenten
natürliche Sprache bevorzugen. Trotz jüngster Fortschritte im Bereich der Mensch-
Maschine-Interaktion ist die Verarbeitung natürlicher Sprache für Maschinen jedoch
bekanntermaßen komplex und schwer zu realisieren.

In dieser Dissertation geht es darum, Agenten zu ermöglichen, mit Menschen über
natürlichsprachliche Texte zu kommunizieren und dabei den Kontext zu berück-
sichtigen, in dem sich ein Mensch gerade befindet. Heutige Dienste zum standard-
mäßigen Information Retrieval (IR) oder große Sprachmodelle (LLMs) sind jedoch
nicht ausreichend, um dieses Ziel zu erreichen. Wir betrachten in dieser Dissertation
„Kommentare“ verbunden mit Textdokumenten im Korpus. Diese „Kommentare“
haben möglicherweise keinen direkten Bezug zum Text und erschließen sich erst
durch den Kontext. Wenn „Kommentare“ in natürlicher Sprache formuliert sind,
kann ein Mensch dadurch leicht auf relevante Dokumente und darin auf Absätze
oder Sätze verwiesen werden, jeweils bezogen auf den Kontext, wie z. B. ein ganz
neues wissenschaftliches Problem.

Diese einem Textdokument beigefügten „Kommentare“ sind subjektiv, da der Kon-
text und nicht nur das Textdokument selbst für die Interpretation entscheidend ist.
Daher nennen wir diese „Kommentare“ subjektive Inhaltsbeschreibungen (SCDs).
Ein Mensch kann den Kontext nun zweifach spezifizieren, zum einen mit Hilfe von
SCDs, die mit dem Korpus verbunden sind, und zum anderen als Teil der Anfragen
an den Agenten. Ein weiterer Vorteil von SCDs ist, dass Techniken für SCDs weniger
Ressourcen als LLMs benötigen und effizient auf Standard-Hardware laufen.

Diese Dissertation stellt Techniken vor, die für einen SCD-basierten IR-Agenten be-
nötigt werden. Ein solcher Agent zeichnet sich durch die Fähigkeit aus, den Kontext
und die Subjektivität von Menschen zu berücksichtigen. Zunächst muss der Agent für
einen Korpus initiale SCDs einschließlich Labels bestimmen. Anschließend werden
die SCDs, z. B. durch menschliches Feedback, verbessert. Eine Aktualisierung der
SCDs ist auch erforderlich, wenn sich Kontext oder Menschen verändern. Schließlich
gibt es noch Relationen zwischen SCDs, z. B. die Komplementarität. Wir zeigen,
wie solche Relationen bestimmt und im IR-Agenten genutzt werden können.

v

Acknowledgements

Working on a dissertation is a demanding and sometimes exhausting task. In the
end, however, you can see that a result has emerged and sometimes this comes faster
as initially thought.

So, thank you, Ralf Möller, for giving me this opportunity! Thank you for the
numerous discussions about my and other’s research, but also about artificial intel-
ligence in general. Often we had to discuss matters concerning teaching, too. You
always had an open ear for my ideas, questions, and issues—guiding me with advices
through the journey of my dissertation. I also would like to thank Diedrich Wolter
for reviewing my dissertation and Thomas Eisenbarth for chairing my defense.

It all started during my bachelor’s studies at University of Lübeck. Tanya Braun
asked me if I wanted to become a tutor of “Introduction to Web and Data Science”.
I said “Yes” and my interest in the topic of data science started to grow. Thank
you, Tanya. Looking for a topic of my bachelor’s thesis, I asked Tanya and Ralf,
and chose a topic about Latent Dirichlet Allocation. It was a great time and I
learned a lot writing this bachelor’s thesis—my first academic work. Thank you,
Felix Kuhr, for introducing me to the academics. After finishing my bachelor, I was
able to support Felix with his evaluations for his dissertation. Hence, I kept working
with Felix and Tanya on the field of text understanding during my master’s studies.
Subjective Content Descriptions were also born during this time.

When the master’s thesis was due, I naturally went to ask Ralf for a topic. Thus,
I completed my master doing research with Felix, Tanya, and Ralf. Directly after-
wards I started as doctoral student at the Institute of Information Systems with
Ralf becoming my supervisor. I was lucky enough to work with Subjective Content
Descriptions again.

The work at the institute mostly consists of two parts: Doing research for the disser-
tation and teaching—at least in a simplified world. Thank you, Malte Luttermann,
for going through bachelor and master with me. You became a doctoral student of
Ralf, too. Our very good and efficient collaboration could go on, even if it didn’t fit
with the topic of the dissertation, it did with teaching. Thank you, Marcel Gehrke,
for taking me by hand writing my first own paper, giving me feedback to multiple
versions of each following paper, and discussing new ideas. Several times I came out

vi

of a conversation about my research with the clear idea and solution in mind—only
being required to LATEX it. However, it is slightly more than that.

My thanks also go to the team members of the institute for all the other discussions
and conversations. I would also like to thank Angela König and Nils Fußgänger for
helping me with all the organizational topics and keeping many of them away from
me.

Working on a dissertation is somehow a cycle of having an idea or problem, for-
malizing it, working on a solution, doing an evaluation or proof, and summarizing
everything in a paper. When a paper is finished, the next one is ready to come.
So, this is similar to a spiral going up—each paper builds on the previous and runs
through the same steps. It remembers me of a serpentine road going up a mountain.
Finishing this dissertation, a plateau is reached, but there are more plateaus further
up and other mountains, too.

Thank you to everyone being on this journey with me!

Magnus Bender
Lübeck, February & October 2024

vii

Contents

Abstract iii

Kurzfassung v

Acknowledgements vi

List of Variables, Notations, and Abbreviations xii

1. Introduction 1
1.1. Related Work . 2
1.2. Overview of Contributions . 6
1.3. Structure . 7

2. Preliminaries 9
2.1. Notations for Corpora . 9
2.2. Natural Language Processing Techniques 10
2.3. Intelligent Agents . 13

3. The Universe of Subjective Content Descriptions 15
3.1. Subjective Content Descriptions . 16
3.2. SCDs in an Information Retrieval Agent 19
3.3. Detailed Contributions . 23

I. Theoretical Foundation 27

4. USEM – UnSupervised Estimation of SCDs 29
4.1. Introduction . 29
4.2. Unsupervised Estimation of SCDs . 31
4.3. Evaluation . 37
4.4. Related Work . 42
4.5. Interim Conclusion . 44

ix

Contents

5. LESS is More – Label Estimation for SCDs without Supervision 45
5.1. Introduction . 45
5.2. Computing Labels for SCDs . 47
5.3. Evaluation . 50
5.4. Interim Conclusion . 55

6. FrESH – Feedback-reliant Enhancement of SCDs by Humans 57
6.1. Introduction . 57
6.2. Incorporate Feedback . 58
6.3. Evaluation . 61
6.4. Interim Conclusion . 64

7. ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs 65
7.1. Introduction . 65
7.2. Related Work . 66
7.3. Relation-preserving Updates on SCD Matrices 67
7.4. Evaluation . 73
7.5. Interim Conclusion . 77

8. Complementarity as an Inter-SCD Relation 79
8.1. Introduction . 79
8.2. Related Work . 81
8.3. Preliminaries . 82
8.4. Identifying Complementary Documents 83
8.5. Document Classification with Complementarity and Similarity 90
8.6. Evaluation . 98
8.7. Interim Conclusion . 104

II. Application 107

9. Composing an Information System using SCDs 109
9.1. Introduction . 109
9.2. Basic Structure . 110
9.3. Working with Corpora . 112
9.4. Working with SCDs . 114

10.SCDs in Further Domains 123
10.1. Introduction . 123
10.2. Humanities Aligned Chatbot . 124
10.3. Research Data Repository Integration 127

x

Contents

11.Conclusion 131
11.1. Summary of Contributions . 131
11.2. Outlook . 133

A. Appendix 135

Bibliography 137

Publications 146

Curriculum Vitae 150

xi

List of Variables, Notations, and
Abbreviations

This list provides an overview of the basic and reoccurring variables, notations, and
abbreviations used in this dissertation. All items are listed in order of appearance
and are introduced in the chapters of the dissertation, too.

• Chapter 1 – General Abbreviations

NLP : Natural Language Processing

AI : Artificial Intelligence

IR : Information Retrieval

SCD : Subjective Content Description

LLM : Large Language Model

LDA : Latent Dirichlet Allocation

BERT : Bidirectional Encoder Representations from Transformers

GPT : Generative Pre-Trained Transformer

IE : Information Extraction

ChatHA : Humanities Aligned Chatbot

RDR : Research Data Repository

• Chapter 2 – Notations for Corpora

w : Word from given vocabulary V = {w1, . . . , wL}, L ∈ N

s : Sentence, sequence of words s = (w1, . . . , wN), N ∈ N, wi ∈ V
d : Document, a sequence of sentences d = (sd

1, . . . , sd
Md), Md ∈ N

D : Corpus of documents D = {d1, . . . , dD}, D ∈ N

M : Number of sentences in corpus, M =
∑

d∈D Md

C : SCD’s additional content, e.g., label l and relations R

xii

t : SCD, tuple t = (C, {s1,, sS}), S ∈ N

g(D) : SCD set for corpus D
g(d) : SCD set for document d

I(wi, sd) : Influence value for each word wi in sentence sd

• Chapter 3 – Variables and notations used with SCDs

K : Number of SCDs for corpus, K ∈ N

L : Size of vocabulary V , L ∈ N

δ(D) : SCD matrix for D, shaped K × L

(vi,1, ..., vi,L) : i-th row of SCD matrix δ(D), i.e, word distribution of ti

δ(s) : Word count vector of sentence s, shaped 1× L

s⃗ : Word count vector of sentence s, shaped 1× L

W : Sequence of MPS2CD similarity values sim ∈ W
• Chapter 3 – Vocabulary and techniques used with SCDs

SCD : Subjective Content Description

SCD matrix : SCD-word distribution matrix

SEM : Supervised Estimator of SCD Matrices

MPS2CD : Most Probably Suited SCD

iSCD : Inline SCD

cSCD matrix : Combined SCD matrix (related and complementary SCDs)

• Part I – Contributed techniques of this dissertation

USEM : UnSupervised Estimator of SCD Matrices

LESS : Label Estimation for SCDs without Supervision

FrESH : Feedback-reliant Enhancement of SCDs by Humans

ReFrESH : Relation-preserving Feedback-reliant Enhancement of SCDs

• Part II – Applications of the techniques of this dissertation

SIS : SCD-based Information System

ChatHA : Humanities Aligned Chatbot

xiii

1. Introduction

In today’s modern world, humans not only interact with each other, but also with
various intelligent systems, which are composed of artificial agents acting on be-
half of human principals. Natural language is the most intuitive form of human
communication, and the assumption is that humans would like to apply natural
language when interacting with agents. For example, humans give task descriptions
to artificial agents, which then carry out the task without the the requirement to
be micromanaged. We assume that agents report their task results back to their
human principals. However, despite recent advances in human-machine interaction,
Natural Language Processing (NLP) is known to be quite complex for machines
and difficult to realize effectively. The complexity persists even when focussing on
just one language, such as, e.g., English. Based on a task description, agents are
expected to make decisions and execute actions to fulfil their respective task de-
scriptions. In addition, agents continuously reinterpret their task descriptions based
on the developing interaction context specified in natural language.

NLP is an important field of research that bridges computer science, linguistics, and
Artificial Intelligence (AI). In the context of this dissertation, the goal of NLP is
to enable agents to communicate with humans about natural language texts while
dealing with task descriptions in a way that appropriately considers the context
the human is working in. To achieve this goal, today’s services such as standard
Information Retrieval (IR), summarization services, or writing style enhancements,
to name just a few common services, are not sufficient.

Applying the idea of this dissertation, for instance, on IR returning a set of text
documents or summarization returning (rather large) texts, agents should be able
to comment on those returned texts from the perspective of the context in which a
human principal works. This involves the attachment of “comments” which might
have no direct grounding in the base text, but indeed require the context to make
sense. If “comments” are formulated in natural language, a human principal can
easily be pointed to relevant documents and, in those documents, to paragraphs or
sentences that are relevant for the context, e.g., a new scientific problem the human
is working on. The conjecture of this dissertation is that “comments” ensure that
the human principal can easily grasp why a document, paragraph, or sentence is
relevant for the context the human works on without requiring the human to read
all parts of the texts.

1

1. Introduction

To illustrate these rather abstract ideas, think about studying for an exam. There
are scripts, slides, and additional materials such as books that cover the topic of the
exam. These text documents form a corpus, which is used by the agent to perform
IR. The agent’s principal is in a specific context, i.e., studying for the exam. An
important question that this dissertation investigates is how can the context be
made accessible to the agent as part of the task description?

Specifically, the context while studying for an exam comprises, e.g., the level of
knowledge across the different areas in the topic of the exam or the personal interest
for the topic. This context is available to the agent through the “comments” attached
to the documents in the corpus. Some “comments” have been added by the principal
during lectures, e.g., notes, examples, or references to other materials. Also questions
and hints for understanding are added as “comments”. Based on the number of
“comments” each text document has, the agent is able to estimate the principal’s
interest in this document. In addition, text documents with many “comments”
containing questions may indicate an area in which the principal is less proficient.
In summary, when studying for an exam, context-specific “comments” help the
agent to be beneficial to its principal, e.g., by identifying less proficient areas and
highlighting references to more proficient areas to support understanding.

The “comments” attached with text documents are considered to be subjective be-
cause it is the context, not the base text, that matters for the interpretation of
comments. Thus, we call the above-mentioned “comments” in this dissertation Sub-
jective Content Descriptions, or SCDs for short. The reader might imagine SCDs
as sticky notes attached to a certain part of the text documents and filled with
paratext to reflect the subjectivity of the human principal. SCDs can also contain
references to data or other texts. We first illuminate these ideas in the light of a
discussion about related work in NLP, and then summarize the main contributions
of this dissertation.

1.1. Related Work

This section starts with a short characterization of NLP including the currently
very popular Large Language Models (LLMs) and continues with text annotation.
Thereby, we focus on the subjectivity brought by humans and the context created
by interaction with an NLP-based agent. Finally, we outline open problems in the
field of SCDs.

In addition to this section of related work, multiple chapters of this dissertation have
their own section of related work especially relevant for the actual chapter.

2

1.1. Related Work

1.1.1. Symbolic and Statistical Approaches

NLP systems can be roughly divided into systems using symbolic and systems us-
ing statistical approaches. Recently, neural networks are popular for use in NLP
systems.

A symbolic approach is characterized by the idea to identify symbols like letters or
words and transform them based on rules. Hence, symbolic systems often consist of
a large amount of universal rules which are applied to natural language text. The
rules are often hand crafted, which is very time-consuming and does not consider
subjectivity.

Statistical approaches have in common that they use statistics of corpora of natural
language text, e.g., count words in sentences, documents, and the entire corpus.
Thereby, statistical NLP tackles the problem of manually creating rules for symbolic
NLP. The term-frequency inverse-document-frequency (tf.idf) [SJ72] is a well known
and simple approach to calculate the relevance of words in a text document related to
its corpus. However, tf.idf calculates relevances only based on words and documents,
and does not take context into account in the way we need.

Another technique from the field of statistical NLP are topic models. Topic models
represent the topics of a corpus and the topics of the documents in the corpus by
distributions over the words. One well-known algorithm to create topic models is
Latent Dirichlet Allocation (LDA) [BNJ03]. LDA has many extensions, e.g., the
author-topic model [RZGSS04], which enables LDA to observe each author of a
document, and the dynamic topic model [BL06], which allows for analyzing topic
changes over time. Overall, by LDA topic models are objectively calculated for a
certain corpus.

Neural networks are a commonly used technique in the area of machine learning.
The structure of a neural network consists of multiple layers, where each layer con-
sists of multiple units, often perceptrons [Ros58]. Together, all the layers imple-
ment a function which transforms raw input values to an output value. Then, the
output value can be easily processed, e.g., used for making a decision based on a
threshold. Neural networks are trained for a specific task pre-defined by a large
amount of training data. A well known neural network based NLP technique is
Word2Vec [MCCD13]. Word2Vec is a so-called embedding technique, i.e., it takes
words as input and encodes these words as vectors in a vector space. Similarly, tf.idf
is an embedding technique where the vector space is hand-crafted, unlike Word2Vec
where it is trained. In both cases, the output vectors can be, e.g., used to identify
similarities or to predict words.

Next, we consider LLMs, which are huge networks used for NLP.

3

1. Introduction

1.1.2. Large Language Models

LLMs are mostly based on the transformer architecture introduced by Vaswani et
al. [VSP+17]. Thereby, the big advantage of the transformer architecture is that all
inputs are simultaneously fed into the model. Thus, the models can be trained fast
and in parallel.

Previously, commonly used techniques in the area of NLP were Recurrent Neural
Networks (RNNs) [RHW86] and neural networks with Long Short-Term Memory
(LSTM) [HS97] units. For both techniques, the input values are fed into the model
sequentially one after the other. Inside the network, the previous inputs are then
stored by the feedback loops of the RNN or in the LSTM units. When adding a
new input the influence of each previous input becomes a bit smaller and vanishes
for long input sequences, which is called vanishing gradient. Thus, the length of the
input is limited in terms of vanishing gradients and model’s overall size in terms of
training time.

These limits regarding input length and model size are lifted by the transformer
architecture. Hence, the introduction of the transformer architecture initiated the
development of a large number of new and very large language models.

A well-known LLM is the Bidirectional Encoder Representations from Transformers
(BERT) [DCLT19] introduced by Devlin et al. BERT is an encoder and encodes a
sequence of inputs, i.e., words, into a sequence of vector representations. Another
LLM is the Generative Pre-Trained Transformer (GPT) [RN18, RWC+19, BMR+20],
mainly developed by OpenAI and released in several improved versions. GPT is a
generative model, i.e., the model generates natural language. GPT generates a
sentence by extending it word by word, and thus, is able to write text based on
previous or initial words. State-of-the-art chatbots like ChatGPT1 or Gemini2 use
the transformer architecture.

These chatbots process natural language queries as input and respond with natural
language output. For many NLP related tasks, it is possible to simply describe the
task using natural language and provide the data to the chatbot, which then directly
solves the task. Hence, LLMs are becoming more and more a Swiss knife for NLP.
Challenges arising with complex tasks and requiring several steps are addressed by
Auto- and AgentGPT [YYH23].

LLM-based chatbots allow their users to use natural language and also consider the
user’s context, as long the user adds the context to the query. It is also possible
to provide larger amounts of data to the chatbot and thus concretize the context
further. However, the LLM used by the chatbot is still trained without a specific

1https://chat.openai.com/
2https://gemini.google.com/, formerly Bard

4

https://chat.openai.com/
https://gemini.google.com/

1.1. Related Work

context and mostly responds by using known contexts that are similar to the user’s
context. Along with SCDs, LLMs may be enriched with subjectivity. Summarized,
pure LLMs as well as symbolic and statistical approaches do not fulfil our goal of
considering subjectivity and contexts brought by humans and users.

1.1.3. Text and Corpus Annotation

Annotations are data associated with locations in text documents of a corpus. Anno-
tating corpora of text documents with additional information has been investigated
for a long time. The corresponding subfield of NLP is text and corpus annotation.

The Brown Corpus [Mav69] is one of the first corpora used to analyze natural lan-
guage. Initially, the distribution of words among different categories and contexts
of natural language was analyzed. Later, part-of-speech tags were added, these tags
can already be interpreted as annotations assigning a class to each word.

In the beginning of natural language annotation, most annotations had to be manu-
ally added to the corpora. Today, crowdsourcing can be used to manually annotate
text documents [SBDS14]. However, manually adding annotations is a time con-
suming task. Thus, semi-automatic and automatic annotation systems were devel-
oped. Automatic annotation system often use a database of entities and facts, e.g.,
DBpedia [ABK+07] or YAGO [SKW07]. Then, the text documents are annotated
with links to the known entities in the database.

With the help of annotations it is possible to add “comments” to texts. Thus, it
is also possible to represent subjectivity and allow humans to add context in form
of annotations. However, the previously described approaches for automatically
annotating corpora yield objective annotations or users need to manually create
their annotations. We address these issues with SCDs.

1.1.4. Subjective Content Descriptions

The main ideas behind SCDs have been developed by Kuhr et al. and are well de-
scribed in Kuhr’s dissertation [Kuhr22] including several publications. SCDs provide
a formalism to add “comments” to texts and consider these “comments” as subjec-
tive and context specific. Coming back to our example of studying for an exam, a
principal is able to specify the context to the agent using SCDs associated with text
documents in the corpus.

Kuhr assumes that a set of initial SCDs exists for a corpus or creates SCDs tran-
sitionally via Information Extraction (IE). The SCDs of a corpus specify a first
context to consider during IR using SCDs. Each query sent to the IR system gives

5

1. Introduction

a second more detailed context, which is considered, too. However, an initial set of
SCDs often does not exist for a corpus, or if there is a set, it is necessary to keep in
mind that the SCDs are subjective. So different sets of SCDs would be needed for
different principals or as the context progresses.

Next, we outline the contributions of this dissertation.

1.2. Overview of Contributions

In this dissertation, we investigate techniques for creating an SCD-based IR agent.
Such an agent is characterized by the ability to consider the context and subjectivity
of its principals, i.e., human users. In the previous section, we identify problems of
current approaches and state why SCDs provide useful techniques and formalisms to
our problem. However, there are still open problems to solve with this dissertation.
Overall, the contributions of this dissertation can be combined and integrated in an
SCD-based IR agent accessible through an information system. It is also possible
to combine SCDs with an LLM-based chatbot, combining the advances of both
techniques.

The first contribution solves the problem of getting an initial set of SCDs for a
corpus. After estimating these initial SCDs, the SCDs are mostly sets of similar
sentences and thus difficult to grasp or describe to humans. Hence, we enrich the
SCDs with labels, i.e., textual descriptions. Both steps work in an unsupervised
way and are applicable to any user supplied corpus.

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: Unsupervised
Estimation of Subjective Content Descriptions in an Information
System in International Journal of Semantic Computing, 2024
https://dx.doi.org/10.1142/S1793351X24410034

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: Unsupervised
Estimation of Subjective Content Descriptions in 17th IEEE Interna-
tional Conference on Semantic Computing (ICSC 2023)
https://dx.doi.org/10.1109/ICSC56153.2023.00052

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: LESS is More:
LEan Computing for Selective Summaries in KI 2023: Advances in Ar-
tificial Intelligence. Lecture Notes in Computer Science, Springer
https://dx.doi.org/10.1007/978-3-031-42608-7_1

The second contribution addresses the problem of updating SCDs when the context
of a user changes or other users want to use already existent SCDs themselves.
Generally, a corpus may contain SCDs which do not represent the context of a

6

https://dx.doi.org/10.1142/S1793351X24410034
https://dx.doi.org/10.1109/ICSC56153.2023.00052
https://dx.doi.org/10.1007/978-3-031-42608-7_1

1.3. Structure

user or do not fulfill the required use-case. Thus, we contribute two techniques to
optimize SCDs based on user-supplied feedback.

• Magnus Bender, Kira Schwandt, Ralf Möller, Marcel Gehrke: FrESH – Feed-
back-reliant Enhancement of Subjective Content Descriptions by
Humans in Proceedings of the Humanities-Centred AI (CHAI) Workshop at
KI2023, 46th German Conference on Artificial Intelligence, 2023
https://ceur-ws.org/Vol-3580/paper3.pdf (Slides: https://dx.
doi.org/10.25592/uhhfdm.13423)

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: ReFrESH –
Relation-preserving Feedback-reliant Enhancement of Subjective
Content Descriptions in 18th IEEE International Conference on Seman-
tic Computing (ICSC 2024) – Best Paper Award
https://dx.doi.org/10.1109/ICSC59802.2024.00010

One type of SCD references multiple locations, e.g., sentences, in the corpus whereas
all sentences share the same SCD. However, understanding text documents requires
more than groups of similar sentences. Hence, we introduce relations between SCDs
and use complementarity as an example relation. We define how to measure comple-
mentarity of SCDs and enable the IR agent to retrieve complementary documents
for its users.

• Magnus Bender, Felix Kuhr, Tanya Braun: To Extend or not to Extend?
Enriching a Corpus with Complementary and Related Documents in
International Journal of Semantic Computing, 2022
https://dx.doi.org/10.1142/S1793351X2240013X

• Magnus Bender, Felix Kuhr, Tanya Braun: To Extend or not to Extend?
Complementary Documents in 16th IEEE International Conference on Se-
mantic Computing (ICSC 2022)
https://dx.doi.org/10.1109/ICSC52841.2022.00011

Together, the contributions of this dissertation provide a cycle of estimating, en-
riching, using, and improving SCDs toward text understanding. Metaphorically, the
SCDs of a corpus approach the top of a spiral—iteration after iteration on the cycle,
the SCDs improve incrementally.

1.3. Structure

This dissertation consists of eleven chapters structured in two parts. The first three
chapters provide the introduction to the domain of this dissertation.

7

https://ceur-ws.org/Vol-3580/paper3.pdf
https://dx.doi.org/10.25592/uhhfdm.13423
https://dx.doi.org/10.25592/uhhfdm.13423
https://dx.doi.org/10.1109/ICSC59802.2024.00010
https://dx.doi.org/10.1142/S1793351X2240013X
https://dx.doi.org/10.1109/ICSC52841.2022.00011

1. Introduction

The introduction (Chapter 1) includes general related work, an overview of the con-
tributions, and this section about the dissertation’s structure. Afterwards, Chapter
2 contains general preliminaries especially from the field of NLP. Chapter 3 pro-
vides an introduction to SCDs: It describes the use-cases and objectives of SCDs,
introduces techniques for using SCDs, and outlines previously solved as well as open
problems in the field of SCDs. Chapter 3 is therefore called “The Universe of Sub-
jective Content Descriptions”, it provides a big picture about SCDs and presents
and contextualizes the contributions of this dissertation. The end of Chapter 3 leads
over to Part I containing the different contributions of this dissertation.

Part I provides the theoretical foundation and is divided into five chapters. It
provides the main content of this dissertation:

• Chapter 4: Estimate SCDs in an unsupervised manner for any corpus.

• Chapter 5: Compute labels for SCDs in an unsupervised manner.

• Chapter 6: Incrementally change SCD-based models and delete faulty sen-
tences from corpora.

• Chapter 7: Incrementally update SCD-based models and optimize faulty asso-
ciations of SCDs and sentences.

• Chapter 8: Add relations among SCDs and consider complementary between
SCDs as an example relation.

Part II provides the application of the theory from Part I and contains two chap-
ters. Chapter 9 presents an information system built on SCDs and implements an
IR agent accessible through a web application. It allows users to upload their own
corpora and provides IR services based on SCDs after processing the corpora. Chap-
ter 10 demonstrates that SCDs can be used in more applications: The Humanities
Aligned Chatbot (ChatHA) uses SCDs for processing its output. Using SCDs re-
duces hallucinations and adds citations to the responses. Furthermore, SCDs can
be integrated with a Research Data Repository (RDR) to provide data visualization
on demand.

The dissertation concludes with Chapter 11 which provides a summary of the results
and an overall conclusion. Furthermore, we provide an outlook to still open problems
in the field of SCDs and possible further applications of SCDs.

8

2. Preliminaries

This chapter introduces general preliminaries for the domain of text understanding
as required in this dissertation. First, we formalize corpora of text documents and
the parts they are made of. Second, we give a general overview of NLP with a focus
on IR, corpus annotations, and topic models—especially LDA. Finally, we introduce
agents in the context of AI.

The subsequent sections give the introduction to SCDs and the techniques used
while working with SCDs. Additionally, Chapter 8 has its own preliminaries section
containing additional preliminaries relevant for this chapter.

2.1. Notations for Corpora

First, we formalize our setting of a corpus of text documents.

• A word wi is a basic unit of discrete data from a finite vocabulary
V = {w1, . . . , wL}, L ∈ N.

• A sentence s is defined as a sequence of words s = (w1, . . . , wN), N ∈ N, where
each word wi ∈ s is an element of vocabulary V . Commonly, a sentence is
terminated by punctuation symbols like “.”, “!”, or “?”.

• A document d is defined as a sequence of sentences d = (sd
1, ..., sd

Md), Md ∈ N.

• A corpus D represents a set of documents {d1, . . . , dD}, D ∈ N. Thus, the
overall number of sentences in a corpus is M =

∑

d∈D Md.

• An SCD t is a tuple of the SCD’s additional data C and references to the
referenced sentences {s1,, sS}, S ∈ N. Thus, each SCD references sentences
in documents of D, while in the opposite direction a sentence is associated with
an SCD. The additional data is a set C containing, e.g., a label l of the SCD
and a set R of relations. Thereby, these relations in R can be considered as
links between two SCDs or between an SCD and a sentence. They may also
be accompanied with a weight or factor and a type for each link.

9

2. Preliminaries

• A sentence associated with an SCD is called SCD window, inspired by a tum-
bling window moving over the words of a document. Generally, an SCD window
may not be equal to a sentence, may be a subsequence of a sentence, or the
concatenated subsequences of two sentences, too.

• For a corpus D there exists a set g called SCD set containing K associated
SCDs

g(D) =












Cj
︷ ︸︸ ︷

{lj, Rj, ...},
⋃

d∈D

{sd
1,, sd

Sd}






︸ ︷︷ ︸

tj







K

j=1

.

Given a document d ∈ D, the term g(d) refers to the set of SCDs associated
with sentences from document d.

• Each word wi ∈ sd is associated with an influence value I(wi, sd) representing
the relevance of wi in the sentence sd. For example, the closer wi is positioned
to the object of the sentence sd, the higher its corresponding influence value
I(wi, sd). The influence value is chosen according to the task and might be
modeled with a binomial, linear, or uniform distribution.

2.2. Natural Language Processing Techniques

The field of NLP comprises many techniques. In this section we describe some of
them that are used in multiple chapters of this dissertation.

2.2.1. Information Retrieval

In the domain of NLP, IR is about retrieving information from natural language
texts. Simplified, IR can be imagined as performing a search in a corpus. A query
is sent to an IR system, which then generates an answer and returns it.

The query specifies the information need of a user. Natural language words or text
are possible query formats, as well as more formal, i.e., structured, formats.

The goal of the IR system is to satisfy an information need with a generated answer.
Most IR systems have a dataset of information, this dataset may be a corpus of text
documents or the search index of a search engine. Thus, besides answering queries,
an IR system also needs to maintain its dataset, i.e., extend it with new documents,
remove faulty documents, and keep the data quickly accessible.

10

2.2. Natural Language Processing Techniques

Additional information about the items in the dataset is also beneficial. A corpus of
text documents does not only consist of sentences of text documents, but documents
may also have meta data. Annotations and SCDs provide additional beneficial
information for the IR system, too. Consequently, all additional information should
be used to generate answers to queries.

Usually, a scoring function is used to calculate how well a item from the dataset
matches the information need of the queries. Thus, the IR system calculates the
score for all items in the dataset and returns the items ranked by the scores as
answer.

In a sophisticated IR system, previous queries of the same and other users are
considered, too. Such sophisticated systems lead us to agents (which follow in
Section 2.3).

2.2.2. Information Extraction

IE is often used when processing text documents or in the scoring functions of IR
systems. In the context of NLP, IE is about extracting structured information from
natural language texts.

OpenIE [AJPM15] is a well-know approach to extract triples of subject, predicate,
and object from sentences. These triples are often called spo-triples. For example,
the sentence “Born in a small town, she took the midnight train going anywhere.”
could result in the following triples of strings:

(she, took, midnight train), (she, took, train), (she, born in, small town)

An SCD for the sentences may contain these triples as additional data in the set C.
Furthermore, an IR system may use the spo-triples for calculating similarity scores
of sentences based on equal s, p, and o values.

A big benefit of OpenIE is that it works out of the box and without training for
English language texts. Thus, it can be used to automatically annotate a corpus
with spo-triples.

2.2.3. Topic Models

Topic models represent the topics in a corpus. Commonly, a distribution of words is
used to model each topic. Such distribution represents for each word in the corpus
how probable the occurrence of each word in a document of the actual topic is.
Thus, each topic is characterized by its most probable words.

11

2. Preliminaries

θ z wα φ β
DW

K

Figure 2.1.: Graphical representation of LDA in plate notation, inspired
from [BNJ03]. Only the words of the document w are observable (marked grey).

A well-known technique to create topic models is LDA [BNJ03]. The algorithm
LDA identifies for topics in the corpus during training. As the name states, it
allocates latent topics using a Dirichlet distribution. An LDA topic model is trained
on a corpus of text documents and it is assumed that each document is a set of
words, also called bag-of-words. In the resulting model, each topic is described by a
topic word distribution, i.e., a distribution of the most probable words, while each
document is attributed with a document topic distribution, i.e., a distribution of
the most probable topics. Hence, an LDA topic model describes clusters of similar
documents sharing the same topics among our corpus.

Commonly, K is used for the number of topics a topic model shall create during
training. With SCDs, K is used as number of SCDs in the SCD set g(D) of a
corpus. In both cases K describes a number of clusters of similar parts in corpus,
i.e., document for LDA and sentences for SCDs. In general, SCDs can also be
understood as a kind of topic model, albeit a different one than an LDA topic
model.

An LDA training process starts with the compilation of the documents representing
the corpus and a reasonable choice for the number of topics K. Choosing a good K

is difficult without considering all documents of the corpus. A too large K leads to
very blurred topics that are superimposed with other topics. A too small number
of topics leads to very general topics with low selectivity to other topics. Thus, K

must be determined anew for each application or corpus.

Additionally, there are two hyperparameters α, β ∈ R
+, whose choice determines

the trade-off between the following two targets:

(i) Match the words of each document to as few topics as possible (α).

(ii) Choose as few relevant words as possible for each topic (β).

An LDA topic model consists of two trained discrete probability distributions. Both
distributions are derived from the documents d ∈ D for the topics k ∈ {1, . . . , K}.

• The document topic distribution θd for each document d contains the proba-
bility with which an arbitrarily selected word in the document d belongs to
topic k.

12

2.3. Intelligent Agents

E
n
v
iro

n
m

en
t

A
g
en

t

State What the world is now

How the

world evolves

What it will be like if I

do action ￼𝐴

How happy I will be in

such a state

What my

actions do

Utility What action I should do

now

Sensors

Actuators

Feedback

Goal

Figure 2.2.: An illustration of an agent, figure inspired by [RN21].

• The topic-word distribution φk for each topic k gives for an arbitrarily selected
word from D the probability the word belongs to topic k.

A graphical representation of LDA is shown in Figure 2.1. The hyperparameters α

and β influence the distributions θ and φ. Each word w (of overall W words in the
corpus) is assigned to a topic z.

An LDA topic model is a so-called generative model. A generative model in terms
of LDA is characterized by the assumption that each document topic distribution
generates actual words of each document.

We now know the recurring NPLs techniques used in this dissertation. Next, we
describe the concept of intelligent agents.

2.3. Intelligent Agents

An agent [RN21] is a rational and autonomous unit acting in a world fulfilling a
defined task. The world the agent exists in provides the environment. The agent is
able to perceive this environment through sensors. Additionally, the agent is able to
conduct actions through actuators and thus to change the environment. Generally,
the available sensors and actions depend on the actual agent and its task. Figure
2.2 depicts a schematic illustration of an agent.

Internally, the agent is powered by decision, planning and learning processes, whereas
some agents may only use a subset of these processes. The agent uses its sensors to

13

2. Preliminaries

model the current environment in an internal state. Based on this state, the agent
needs to decide which action to carry out next. Normally, the agent needs to select
the best action from a set of possible actions. Such a selection requires knowledge
about the consequences of each action and also of other influences the environment
is exposed to, e.g., other agents acting in the same environment. To select the best
action, the agent needs to calculate a score for each action considering the environ-
ment after conducting this action. This score represents the utility of each action,
with the agent’s goals in the background.

We assume that the goals of the agent represent an abstract task the agent has to
fulfill. Based on the goals, the agent is able to plan a sequence of actions bringing
it near the goals. Additionally, the agent may implement a feedback based learning
process: For example, the principal, i.e., a user of the agent, gives feedback for each
conducted action. This feedback may be incorporated by the agent to better fulfill
the goals, i.e., the agent may update the utility function based on feedback.

In this dissertation, we create an IR agent based on SCDs. The agent works with
user-supplied corpora, enriches corpora with SCDs, extends corpora with new text
documents, provides an SCD-based document retrieval service, and incorporates
feedback to further improve the SCDs.

The next chapter delves into SCDs and techniques for working with SCDs.

14

3. The Universe of Subjective Content
Descriptions

SCDs provide a flexible way to add additional data to sequences of words or-
ganized in corpora of text documents. Generally, SCDs can contain any type
of data and provide NLP techniques for understanding textual data. For exam-
ple, SCDs can support agents by performing the following tasks: (i) Estimating
SCDs for a single previously unseen text document using the Most Probably Suited
SCD (MPS2CD) algorithm [KBBM19, KBBM20], (ii) classifying a text document
as related, extended, revised, or unrelated to a corpus [KBBM20], (iii) moving
the SCDs from one corpus to another similar corpus by adapting the SCDs’ do-
main [KBBM21], (iv) separating SCDs and actual content being interleaved in
text documents [BBG+21b, BBG+21a], or (v) enriching SCDs in a corpus already
sparsely associated with SCDs [KWM19].

We can look at SCDs from different perspectives. SCDs may represent the topics
of a corpus and thus provide a topic model. But SCD can also simply provide a
set of textual annotations for a corpus, similar to sticky notes in a book. In each
case, SCDs represent a subjective view of a human user on the corpus and the user’s
queries.

SCDs are based on some fundamental intentions and objectives that are common
to all techniques for using SCDs. These fundamentals make SCDs valuable for IR
agents. SCDs do not require large corpora nor huge datasets. Especially, when
working with domain-specific texts or rare languages, the size of a corpus is limited
and there is not enough data to train, e.g., an LLM. Though, SCDs provide a ap-
plicable technique in such case, e.g., for old Tamil poems [BBG+21a]. Furthermore,
techniques using SCDs require less computational resources compared to LLMs and
do not require special hardware like graphic cards. An SCD-based IR agent can run
on off-the-shelf hardware, and thus can be considered as rather resource efficient.
Summarized, SCDs represent a lean computing approach for text understanding.

This chapter starts with a formal introduction to SCDs including the supervised
estimation of SCDs and MPS2CD. Afterwards, we describe how to create an SCD-
based IR agent and outline problems in the field of SCDs. This includes previously
solved problems and problems solved in this dissertation. Finally, we present the
contribution of this dissertation in detail.

15

3. The Universe of Subjective Content Descriptions

3.1. Subjective Content Descriptions

Kuhr et al. have introduced SCDs in [KBBM19]. SCDs provide additional location-
specific data, e.g., annotations or sticky notes, for documents. The data provided
by SCDs may be of various types, like additional definitions, labels or links to
knowledge graphs or other SCDs. The theory of SCDs is not restricted to text
documents annotated with additional text. However, in many use-cases we annotate
text documents with additional textual definitions.

The SCD set g(D) contains all SCDs including their referenced sentences and ad-
ditional data. We assume that each SCD shows a specific distribution of words
near the SCD’s location, i.e., of the referenced sentence, in the document. Thus,
each SCD forms an SCD-word distribution which models the words of its referenced
sentences. All this distributions of the SCDs of a corpus are represented in an
SCD-word distribution matrix [KBBM19], SCD matrix for short. The SCD matrix
contains a row for each SCD and each row contains the word distribution from the
referenced sentences of this SCD. We assume, that the SCD of a sentence generates
the words of its referenced sentences. Thus, the SCD matrix can be interpreted as
a generative model. Generally, a generative model for SCDs is characterized by the
assumption that the SCDs generate the words of the documents in the corpus.

The SCD matrix δ(D) models the distributions of words for all SCDs g(D) of a
corpus D and is structured as follows:

δ(D) =











w1 w2 w3 · · · wL

t1 v1,1 v1,2 v1,3 · · · v1,L

t2 v2,1 v2,2 v2,3 · · · v2,L

...
...

...
...

...
...

tK vK,1 vK,2 vK,3 · · · vK,L











The SCD matrix consists of K rows, one for each SCD in g(D), and each row
contains the word probability distribution for the SCD. Therefore, the SCD matrix
has L columns, one for each word in the vocabulary of the corresponding corpus.
Thus, the word distribution of SCD ti, the i-th row of SCD matrix δ(D), is the
vector (vi,1, ..., vi,L).

3.1.1. Supervised Estimation of SCDs

The Supervised Estimation of an SCD Matrix (SEM) is described in Algorithm 1.
The input of SEM is a corpus D and an SCD set g(D), it returns the SCD matrix

16

3.1. Subjective Content Descriptions

Algorithm 1 Supervised Estimator of SCD Matrices δ(D)

1: function SEM(D, g(D))
2: Input: Corpus D; Set of SCDs g(D)
3: Output: SCD-word distribution matrix δ(D)
4: Initialize an K × L matrix δ(D) with zeros
5: for each document d ∈ D do
6: for each SCD t = (C, {s1, ..., sS}) ∈ g(d) do
7: for j = 1, ..., S do ▷ Iterate over sentences
8: for each word wi ∈ sj do
9: δ(D)[t][wi] += I(wi, sj) ▷ Assume uniform, i.e., I(wi, sj) = 1

10: return δ(D)

δ(D). SEM works in a supervised manner, because it requires the SCD set g(D)
containing referenced sentences.

SEM iterates over each document in the corpus and the document’s located SCDs.
For each located SCD given t, the SCD matrix is updated. First, the referenced
sentences {s1, ..., sS} of t are extracted. Next, for each sentence the row of the matrix
representing SCD t gets incremented for each word in each referenced sentence sj.

Kuhr et al. use a window moving over the words of the documents. Thus, they do
not restrict SCDs to referenced sentences but in general to referenced windows of
words. The authors assume an SCD generates the words in a certain radius around
the SCD’s location while in this dissertation we assume an SCD generates the words
of the sentence at the SCD’s location. Generally, each of our referenced sentences
is a sequence of words and thus, our approach can be generalized to tumbling or
sliding windows of words. However, a sliding window results in more computations
and we argue that our sentence-wise approach does not result in a bad partitioning
as in natural language a sentence is a logical unit. Thus, the most influential words
of a word belong to the same sentence the word itself belongs to. The sentence-wise
approach maintains the logical structure of the documents.

After Algorithm 1 has finished, the SCD matrix needs to be normalized row-wise to
meet the requirements of a probability distribution. However, we skip the normal-
ization because multiple calculations on small decimal values on a computer reduce
the accuracy. Later, we use the cosine similarity with the rows of the matrix and
the cosine similarity does a normalization by definition. Thus, by skipping the nor-
malization we save computational resources and get slightly more accurate results
in subsequent steps.

17

3. The Universe of Subjective Content Descriptions

Algorithm 2 Estimating MPS2CDs and similarity values

1: function MPS2CD(d′, δ(D))
2: Input: Document d′; SCD matrix δ(D)
3: Output: SCDs g(d′) with similarity values W
4: W ← ∅
5: g(d′)← ∅
6: for each sentence sd′

i ∈ d′ do
7: δ(sd′

i)← new zero-vector of length L

8: for each word w ∈ sd′

i do
9: δ(sd′

i)[w] += I(w, sd′

i)

10: t′ ← arg max
t∈g(D)

δ(D)[t] · δ(sd′

i)

∥δ(D)[t]∥2 ·
∥
∥
∥δ(sd′

i)
∥
∥
∥

2

11: sim← max
t∈g(D)

δ(D)[t] · δ(sd′

i)

∥δ(D)[t]∥2 ·
∥
∥
∥δ(sd′

i)
∥
∥
∥

2

12: g(d′)← g(d′) ∪ t′ ▷ Also add sd′

i as referenced sentence to t′

13: W ←W ∪ {(t′, sim)}
14: return g(d′), W

3.1.2. Most Probably Suited Subjective Content Descriptions

The previously described and trained SCD matrix can be used to estimate SCDs for
a document without associated SCDs. First we formalize the MPS2CD problem and
afterwards solve the problem by Algorithm 2 using the SCD matrix [KBBM19].

The MPS2CD problem asks for the k′ most probably suited SCDs t1, ..., tk′ for a
document d′ given the SCD matrix δ(D):

g(d′) = arg max
t1,...,tk′ ∈g(D)

P (t1, ..., tk′ | d′, δ(D))

The definition of the MPS2CD problem does not consider the sentence-wise iteration
used while training the SCD matrix. We can reformulate the MPS2CD problem to
consider the sentence-wise iteration:

g(d′) =
⋃

sentences

sd′

i
∈

(

sd′

1
,...,sd′

Md′

)

arg max
t∈g(D)

P
(

t | sd′

i , δ(D)
)

Analogous to the second definition of the MPS2CD problem, Algorithm 2 iterates
over each sentence of d′. For each sentence the algorithm creates the word distribu-
tion vector δ(sd′

i). This vector of the word counts in sentence sd′

i is shaped 1×L and

18

3.2. SCDs in an Information Retrieval Agent

is created using the approach that was used for the rows of the matrix in Algorithm
1. In addition to δ(s), s⃗ also represents the word counts vector of a sentence s.

We use the cosine similarity to compare δ(sd′

i) with a row of the SCD matrix δ(D)[t]
representing SCD t:

δ(D)[t] · δ(sd′

i)

∥δ(D)[t]∥2 ·
∥
∥
∥δ(sd′

i)
∥
∥
∥

2

The product of Euclidean norms in the denominator is for normalization, so the
vectors do not need to be normalized beforehand. The most probably suited SCD t

is defined as the SCD belonging to the row resulting in the highest cosine similarity
value.

The MPS2CD algorithm allows us to estimate the most probably suited SCDs for
any sentence given the words of the sentence and the SCD matrix. Thus, using
MPS2CD we are able to annotate a new and unseen text document d′ with suitable
SCDs from g(D). However, we still need an initial set of SCDs for an initial corpus
D. Next, we consider how to integrate SCDs in an IR agent.

3.2. SCDs in an Information Retrieval Agent

We assume an IR agent works with a corpus of text documents. In this dissertation,
the text documents are associated with SCDs. In Figure 3.1 the basic structure of
an SCD-based IR agent is shown. Creating a fully functional SCD-based IR agent
poses some problems to be solved in this dissertation.

3.2.1. Problem I: No SCDs Available

Let us consider the following abstract use-case: A user, e.g., a human, (bottom
right corner of figure) brings a corpus of text documents to work with. This corpus
represents the general field of interest for the user. The user might as well be an
agent. Then, the user will send queries about the corpus to the IR agent, and the
IR agent could answer these queries using SCDs if they are derived. To do so, the
IR agent needs SCDs and an SCD matrix for the user supplied corpus. Obtaining
SCDs is Problem I, because SEM requires an initial set of SCDs for a corpus, but
a user supplied corpus often does not have SCDs. The lightning symbol in the top
left corner of Figure 3.1 represents Problem I.

In our understanding, the initial set of SCDs used by SEM provides the supervision
of the estimation of SCDs. Thus, to solve Problem I, an unsupervised technique

19

3. The Universe of Subjective Content Descriptions

📚

Corpus of

Documents

SCD
Add. Data

‣Label

‣…

t1
𝒞1

l1

SCD
 Add. Data

‣Label

‣…

t2
𝒞1

l2

SCD
 Add. Data

‣Label

‣…

tK
𝒞K

lK

SCDs g(𝒟)

SE
M

No

initial

SCDs

Query

Response

Feedback

t1
t2

⋮

tK

w1 w2 … wL

v1,1 v1,2 … v1,L

v2,1 v2,2
… v2,L

⋮ ⋮ ⋮ ⋮

vK,1 vK,2
… vK,L

Used to

Respond to

Queries

How to

incorporate

Feedback?

📚

𝒟

Figure 3.1.: Basic structure of an SCD-based IR agent. The lightning symbols
show previously open problems solved in this dissertation.

for estimating SCDs is required. There are already some techniques introduced by
Kuhr et al. which reduce the required supervision for estimating SCDs.

The context-specific adaptation of SCDs [KBBM21] provides a technique to transfer
SCD matrices and their SCDs from one corpus to another corpus. The other corpus
does not need any SCDs in advance, but both corpora must be similar in terms of
having a similar vocabulary and covering a similar topic.

Another approach is to enrich SCDs in a corpus [KWM19]. Given a corpus with
very few SCDs, the corpus gets enriched with further similar SCDs automatically,
but some initial SCDs are required.

In some cases, documents are already annotated with SCDs, but there are SCDs
embedded in the documents. Thus, the agent first needs to separate the embedded
SCDs from the content in the documents. The inline SCD (iSCD) problem addresses
this task [BBG+21b, BBG+21a]. Though, the solution still needs an SCD matrix.

Example 3.1. Inline SCD Example
Assume a document contains the following sentence with two SCDs embedded. The
underlined words represent the SCDs, while the other words form the content.

“We visited the bisons large animals in the zoo a place where non-domes-
tic animals are exhibited.”

20

3.2. SCDs in an Information Retrieval Agent

In summary, prior to this dissertation, there is no technique for estimating SCDs
for any corpus that requires no initial SCDs at all.

3.2.2. Answer Queries

If the IR agent has a corpus associated with SCDs and the SCD matrix, it can answer
queries. We assume the query consists of one or multiple sentences to which similar
documents should be retrieved from the corpus. First, the MPS2CD algorithm
calculates the MPS2CDs for the query sentences. Second, for each MPS2CD the
referenced sentences are fetched. Thus, the SCDs with their referenced sentences
provide the response, whereas each sentence highlights a relevant part of a document.
The MPS2CD similarity values can be used as a score and to order the SCDs in the
response.

The quality of the response also depends on the text documents available in the
corpus. If the agent does not have a relevant document it cannot retrieve one. Thus,
the agent is required to maintain the corpus and extend it with relevant documents.
Kuhr et al. [KBBM20] present an SCD-based classification approach for documents.
New documents are classified as related, extended, revised, or unrelated to a corpus.
Using this classification approach, the IR agent is able to identify relevant documents
to add to the corpus. Such documents might be extensions and revisions because
they contain possibly new changes of known documents. The new documents can
be associated with SCDs using MPS2CD.

3.2.3. Problem II: Incorporate Feedback

After answering a query of a user, the IR agent may get feedback about the response.
This leads us to the Problem II building an SCD-based IR agent. The agent should
incorporate the feedback and the SCDs based on the feedback, but there is no algo-
rithm to update SCDs matrices. The right lightning symbol of Figure 3.1 represents
Problem II.

3.2.4. Problem III: Suitable Labels for SCDs

The response of the IR agent contains MPS2CDs for the query sentence of the user.
Each SCD has a set of referenced sentences, which are part of a document. However,
it is difficult for the IR agent to describe the response to the user such that the user
can grasp each SCD. Especially, the response is only a set of SCDs with a set of

21

3. The Universe of Subjective Content Descriptions

SCD
Add. Data

‣Label

‣…

t1
𝒞1

l1

SCD
 Add. Data

‣Label

‣…

t2
𝒞1

l2

SCD
 Add. Data

‣Label

‣…

tK
𝒞K

lK

SCDs g(𝒟)

t1
t2

⋮

tK

w1 w2 … wL

v1,1 v1,2 … v1,L

v2,1 v2,2
… v2,L

⋮ ⋮ ⋮ ⋮

vK,1 vK,2
… vK,L

 SCD ti
Additional Data :
‣ Label
‣ Relations
‣ Links
‣ …

𝒞i

li

Word

Distribution

{vi,1, . . . , vi,L}

Referenced Sentences

{s1, . . . , sS}

📚

Corpus of

Documents

Labels?

(More)

Relations?

𝒟

Figure 3.2.: Internal view on the SCDs used by the SCD-based IR agent. The
lightning symbols show previously open problems solved in this dissertation.

sentences each. Thus, the user needs to read multiple sentences of each SCD and
then select the SCDs which fit the user’s information need best.

A label or short description of each SCD would solve Problem III. The IR agent can
respond with a set of SCDs and their labels. Then, the user reads the labels of each
SCD and selects the best one.

Figure 3.2 shows an internal view of the SCDs used by the IR agent. Each SCD,
depicted as a sticky note, refers to a set of sentences in the corpus and a word
distribution stored in the SCD matrix. In the figure, the additional data of the SCD
is written directly on the the sticky note. There, a label li is already added, but for
some SCDs it needs to be automatically estimated first. So the lightning symbol in
the middle right of Figure 3.2 represents the Problem III.

3.2.5. Problem IV: Relations among SCDs

An SCD covers a group of similar sentences in the corpus. A sentence may be in an
SCD or not, but in reality there is more than just similarity and boolean in or out.
Thus, the additional content of an SCD may contain relations to other SCDs and
an SCD may be linked to other SCDs.

Problem IV, outlined by the right lightning symbol in Figure 3.2, is about repre-
senting different relations about SCDs. Actually, different relations among SCDs
may be a useful extra feature of SCDs rather than a problem. However, adding
relations among SCDs requires changes to the SCD matrix, SEM, and the MPS2CD
algorithm.

22

3.3. Detailed Contributions

Creating an IR agent based on SCDs we came across four problems, (Problem I) most
corpora initially do not contain any SCDs, (Problem II) feedback from the user
cannot be used to improve the SCDs, (Problem III) SCDs need labels when shown
to a user, and (Problem IV) grouping similar sentences is sometimes not enough,
i.e., different relations among SCDs are needed.

3.3. Detailed Contributions

This dissertation solves the four problems identified in the previous section. Each
chapter of Part I addresses one problem and provides a solution. In Part II, we
build the described IR agent system as a web based information system and describe
further applications of SCDs. Next, a brief preview of each chapter is provided.

3.3.1. Unsupervised Techniques

The first two chapters of Part I address the unsupervised estimation of SCDs and
short descriptions or labels.

USEM UnSupervised Estimation of SCD Matrices (Chapter 4)

A user supplies a corpus to our IR agent and needs to retrieve documents with
similar content and highlight relevant locations in retrieved documents. The
IR agent needs SCDs referencing sentences of similar content across various
documents in the corpus and most text documents are not associated with
SCDs. We present USEM which solves the problem because it associates any
corpus with SCDs. In an evaluation, we show that the performance of USEM
in estimating topics of similar content in the corpus is on par with LDA, while
USEM provides SCDs referencing sentences of similar content.

USEM solves Problem I, shown by the top left lightning symbol in Figure 3.1.

LESS Label Estimation for SCDs without Supervision (Chapter 5)

SCDs estimated by USEM lack meaningful descriptions, i.e., labels consist-
ing of short summaries. Labels are important to identify relevant SCDs and
documents by the agent and its users. We present LESS, an algorithm which
creates labels for SCDs using the word distributions of the SCDs. In an eval-
uation, we compare the labels computed by LESS with labels computed by
LLMs and show that LESS computes similar labels but requires less data and
computational power.

LESS solves Problem III, shown by the middle right lightning in Figure 3.2.

23

3. The Universe of Subjective Content Descriptions

3.3.2. Feedback and Updates

The next two chapters of Part I deal with incorporating feedback to improve SCDs,
i.e., Problem II, which is outlined by the right lightning symbol in Figure 3.1.

FrESH Feedback-reliant Enhancement of SCDs by Humans (Chapter 6)

A human interacts with our IR agent and a response contains an erroneous part.
Such errors, like faulty SCDs, should be sent back to the agent by the human
as feedback. Then, the agent needs to incorporate the feedback and remove
the erroneous part of its internally used SCDs. However, removing a faulty
sentence with an SCD in a previously trained model is a difficult task—often
the model needs to be retrained from scratch. To circumvent retraining, we
present FrESH to keep the SCDs fresh and maintained with human feedback.

ReFrESH Relation-preserving Feedback-reliant Enhancement of SCDs (Chapter 7)

Again, we work with human feedback sent back to the agent after a response.
In difference to FrESH, we do not have a faulty sentence or SCD to remove
completely. We are in the situation, when a user of the agent is not the creator
of the SCDs for the corpus. Hence, answers may be considered faulty by an
agent’s user, because the SCDs may not exactly match the perceptions of an
agent’s user. A naive and very costly approach would be to ask each user to
completely create all the SCD themselves. To circumvent manual creation, we
present ReFrESH, which updates the SCDs in the corpus incrementally. Using
ReFrESH, SCDs can be refreshed with feedback by humans and it allows users
to build even better SCDs for their needs.

3.3.3. Relations and Complementarity

The final chapter of Part I (Chapter 8) deals with adding relations among SCDs
using the example of complementarity, i.e., Problem IV, which is outlined by the
right lightning symbol in Figure 3.2.

Our agent so far relies on similarity measures to identify related documents
used as response or for corpus extension. However, similarity may not be
appropriate if looking for new information or different aspects of the same
content. Therefore, we combine complementarity- and similarity-based identi-
fication of documents, specifically, (i) a formal definition of complementarity
using the available SCDs in the form of relational tuples as well as a taxonomy
interrelating the concepts of the tuples, (ii) a technique for classifying comple-
mentary and related documents in one go, and (iii) a case study assessing the
classification performance for complementary and related documents.

24

3.3. Detailed Contributions

We introduce a combined SCD (cSCD) matrix that is able to model similar
and complementary SCDs altogether. This cSCD matrix comes with adap-
tions for SEM and MPS2CD which can be generalized for other relations than
complementarity.

3.3.4. Application

There are two chapters in Part II. We present three applications of SCDs and thus
demonstrate the usability of SCDs in further use-cases.

SIS SCD-based Information System (Chapter 9)

We present an implementation of the SCD-based IR agent described in Sec-
tion 3.2. The agent is integrated in an information system to be accessed by
humans via a Graphical User Interface (GUI) and by other applications via
an Application Programming Interface (API). Users of the system may submit
their own corpora and run queries. The system applies the theoretical contri-
butions from Part I of this dissertation. We describe the basic structure and
demonstrate how the system can assist a user.

ChatHA Humanities Aligned Chatbot (Chapter 10, Section 10.2)

We present a use-case of SCDs. ChatHA provides a user-friendly interaction
of humans with their corpora. Internally, ChatHA relies on a chatbot with
an LLM having access to the user’s corpus. The user can send queries about
the corpus to the LLM and the LLM generates answers. SCDs are used to
eliminate hallucinations in the raw LLM output. Further, SCDs can be used
to add citations to the LLM’s output pointing to the user’s corpus.

RDR Integration Research Data Repository (Chapter 10, Section 10.3)

We outline how SCDs can be used to rapidly deploy an information system for a
corpus of text documents. RDRs are web based information system containing
large amounts of data in multiple collections. Often there are collections of
text documents which represent a corpus. A user interested in viewing a corpus
normally needs to download and manually search the corpus. An automatic
import in our SCD-based information system providing an IR agent makes it
easier for such a user to interact with a corpus in the RDR.

25

Part I.

Theoretical Foundation

27

4. USEM:
UnSupervised Estimation of SCDs

This chapter is based on the following two publications:

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: Unsupervised
Estimation of Subjective Content Descriptions in an Information
System in International Journal of Semantic Computing, 2024
https://dx.doi.org/10.1142/S1793351X24410034

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: Unsupervised
Estimation of Subjective Content Descriptions in 17th IEEE Interna-
tional Conference on Semantic Computing (ICSC 2023)
https://dx.doi.org/10.1109/ICSC56153.2023.00052

In both cases: Magnus Bender developed the initial idea, conducted the experiments,
and wrote the manuscript. The other three authors fundamentally supervised the
research by discussing ideas, proofreading the manuscript multiple times, and giving
feedback. The actual sections of this chapter are largely taken verbatim from the
journal article. The journal article itself is an extended version of the conference
paper.

4.1. Introduction

In this chapter, we present the solution to Problem I (Subsection 3.2.1) we came
across building the SCD-based IR agent. USEM is the UnSupervised Estimator
for SCD Matrices, an approach to estimate an SCD matrix for any corpus in an
unsupervised manner.

We assume that a user provides a corpus for IR. However, this corpus is not asso-
ciated with SCDs, which are required for IR. SCDs are subjective in the sense that
the agent associates data with text parts, e.g., sentences, to best carry out tasks
described by the principal. Thus, it is crucial for the IR agent to add corpus-specific
SCDs to the user supplied corpus.

For the IR agent, it is valuable to have for each sentence a set of references to similar
sentences in the documents across its corpus. Using these references, the agent can

29

https://dx.doi.org/10.1142/S1793351X24410034
https://dx.doi.org/10.1109/ICSC56153.2023.00052

4. USEM – UnSupervised Estimation of SCDs

retrieve sets of similar sentences in response to each sentence a user queries. Such
references can be modeled by SCDs being associated with the sentences, including
the corresponding SCD matrix. In our understanding, each SCD represents a con-
cept or topic mentioned in the corpus. Each SCD’s concept is implicitly defined
by the word distribution and the content of the sentences referenced by each SCD.
Thus, the sentences of an SCD are similar.

Let us have a closer look why sentence similarity can help with the IR task. Given
is a corpus of three documents {d1, d2, d3}, dealing with three different car models,
and each document consists of ten sentences {di = (sdi

1 , sdi
2 , . . . , sdi

10)}3
i=1. For the

agent answering a query about sentence sd2

2 , the SCDs t1 and t2 could be valuable:
SCD t1 references the sentences sd2

2 and sd1

8 because both sentences are about the
engine’s horsepower. Thus, t1 represents the concept engine power. Furthermore,
SCD t2 represents the concept car manufacturer because it references two sentences
sd3

7 and sd1

2 about the car’s manufacturer. Then, the agent returns d1 and highlights
sd1

8 answering the query about sentence sd2

2 because both sentences cover engine
power. So for this query, the additional information of t1 turned out to be useful.

In a first step, a solution to the lack of SCDs for most corpora identifies similar
sentences—preferably in an unsupervised manner. Then, using the identified similar
sentences, SCDs are formed, where each SCD represents a different concept in the
corpus and references multiple locations in the text documents of the corpus. This
is how USEM associates any corpus of text documents with SCDs. Mainly, USEM
detects similar concepts referenced in the text documents of the corpus and then
forms an SCD, which groups all occurrences of the same concept.

The remainder of this chapter is structured as follows: First, we conclude the in-
troduction by describing the analogies between SCD matrices and topic models.
Afterwards, we then describe the problem of estimating SCDs in an unsupervised
manner and our solution USEM. We introduce three methods for USEM, namely a
greedy, a K-Means [Llo82], and a DBSCAN [EKSX96] based method. An IR agent
has to automatically select one best method and the best hyperparameters. Thus,
we provide a model selection approach for SCD matrices. In the end, we compare
USEM with its three methods in an evaluation against the well-know LDA. Finally,
we look at related work and provide an interim summary afterwards.

Generally, each estimated SCD represents a topic of the corpus, which is why an
SCD matrix can be interpreted as a topic model of the corpus. In contrast to LDA,
USEM associates each sentence in the corpus with an SCD, while LDA associates
each single word with a topic and each text document with a topic distribution. An
SCD consists of multiple referenced sentences in the corpus and the sentences’ overall
word distribution, while LDA’s topics consist of a distribution of words associated
with each topic. Hence, associating SCDs with sentences instead of words or text
documents is the important difference.

30

4.2. Unsupervised Estimation of SCDs

4.2. Unsupervised Estimation of SCDs

The unsupervised estimation of SCDs is divided into two steps. In a first step, an
SCD matrix needs to be estimated for a corpus. Given an estimated SCD matrix, the
SCDs of a corpus are defined by their SCD-word distributions and the referenced
sentences. For USEM, however, there are three methods with multiple hyperpa-
rameters resulting in multiple estimated SCD matrices for each corpus. Thus, in a
second step, an IR agent needs to select one SCD matrix, for which we introduce a
model selection approach.

4.2.1. Unsupervised Estimation of SCD Matrices

This subsection introduces USEM, the UnSupervised Estimator for SCD Matrices.
The SCD matrix represents in its rows each SCD found in the corpus. Each row con-
tains the word distribution of the sentences associated with the row’s SCD. USEM
is also a kind of topic estimation algorithm because each SCD represents a concept
in the corpus and the SCD references the sentences dealing about this concept.

Algorithm 3 outlines USEM. The input of USEM is a corpus for which an SCD
matrix is to be computed. Commonly, a sentence is associated with an SCD and
each SCD references one or multiple sentences. USEM initially starts by associating
each sentence to one unique SCD. The SCD’s word distribution of each SCD then
only contains the words of the referenced sentence. Lines 10 - 14 of Algorithm 3
show how to create this initial SCD matrix, which consists of a row for each sentence
in the document’s corpus. The word distributions are calculated using the influence
value the same way as in Algorithm 1 (SEM).

The next step is to find the sentences that represent the same concept and group
them into one SCD. There are three different methods for detecting similar rows in
the initial SCD matrix. Lines 16 - 33 of Algorithm 3 show the three methods and
how the rows are merged. If there are more than two rows, two are merged at a time
until all are merged. The main idea of merging two rows is to sum up the quantities
of each word in both distributions of words and deleting the second row from the
matrix.

To identify similar sentences, USEM has three different methods. The first is a
greedy approach followed by two well-known clustering techniques, K-Means and
DBSCAN. We use DBSCAN and K-Means because each method represents a clus-
tering method following a different approach, i.e., density based and distance based
clustering.

31

4. USEM – UnSupervised Estimation of SCDs

Algorithm 3 UnSupervised Estimator for SCD Matrices δ(D)

1: function USEM(D, m, [θ,] [K,] [ε, ms])
2: Input: Corpus D; Method with hyperparameters, i.e.,
3: m = Greedy and threshold θ,
4: m = K-Means and number of SCDs K, or
5: m = DBSCAN, distance ε, and threshold ms

6: Output: SCD-word distribution matrix δ(D)
7: Initialize an M × L matrix δ(D) with zeros
8: l← 0
9: ▷ Build initial SCD matrix

10: for each document d ∈ D do
11: for each sentence sd ∈ d do
12: for each word wi ∈ sd do
13: δ(D)[l][wi] += I(wi, sd)

14: l← l + 1

15: ▷ Use method m to merge rows
16: if m = Greedy then
17: repeat ▷ Detect similar rows and merge
18: (ri, rj)← mostSimilarRows(δ(D))
19: δ(D)[ri]← δ(D)[ri] + δ(D)[rj] ▷ Sum rows
20: δ(D)[rj]← Nil ▷ Delete row
21: until similarity(ri, rj) < θ

22: else ▷ Create clusters of similar rows
23: if m = K-Means then
24: clusters← KMeans(δ(D), K)
25: else
26: clusters← DBSCAN(δ(D), ε, ms)

27: for each cluster c ∈ clusters do
28: ▷ Create sum of all cluster’s rows in first row
29: ri ← FirstRow(c)
30: δ(D)[ri]←

∑

rj∈c δ(D)[rj]
31: for each row rj ∈ c do
32: if ri ̸= rj then ▷ Delete all non-first rows
33: δ(D)[rj]← Nil

34: return δ(D)

32

4.2. Unsupervised Estimation of SCDs

Greedy by Similarity The first method greedily selects the next two rows to merge.
It calculates the cosine similarity between all rows, containing the word distribu-
tions, in the matrix and always merges the two most similar rows. This is repeated
until the similarity between the two most similar rows is below the threshold θ

(Algorithm 3, Lines 17 - 21). Thus, with a lower threshold less SCDs with more
referenced sentences each will be estimated and a higher threshold leads to more
SCDs with less referenced sentences.

The calculation of the cosine similarity between all rows is realized as a matrix
multiplication:

Sδ(D) =
δ(D)· δ(D)T

∥δ(D)∥2 · ∥δ(D)∥T
2

The numerator represents the dot product between each row of the matrix to each
other and the denominator contains the lengths of each row to normalize the matrix’s
rows, as ∥v∥2 represents a vector of the Euclidean norm of each row in v and the
symbol · the matrix multiplication. Numerator and denominator are matrices of
size K ×K each, which are then divided element-wise to form the cosine similarity
matrix Sδ(D). After doing so, Sδ(D) contains the cosine similarity between each pair
of rows in the matrix δ(D). The two most similar rows in δ(D) can now be identified
by searching for the highest value in Sδ(D), of course without searching the diagonal.
Row and column index of the highest value in Sδ(D) represent the most similar rows
in δ(D). Both indexes are returned by mostSimilarRows in Algorithm 3.

Matrix multiplications on huge matrices can be computationally expensive. In case
of the SCD matrix, it is a sparse matrix and sparse matrix multiplication is reason-
ably fast. Additionally, the Euclidean norms of the rows can be cached and updated
partially for the changed rows, only.

K-Means One well-know clustering technique is K-Means [Llo82]. We will not get
into the details how K-Means works, but focus on how to apply K-Means. K-Means
is initialized with K centroids of which each centroid represents a cluster. Each
point is assigned the nearest centroid in terms of the Euclidean distance using a
vector representation of the point. Iteratively, the clusters are optimized by aligning
each centroid in the center of all the points contained in the centroid’s cluster.

We run K-Means on the rows of the SCD matrix to detect clusters of similar rows
in the initial SCD matrix. Each row represents a point and the word distribution
is the vector representation of this point. After K-Means is finished, USEM merges
the rows of the matrix included in the same cluster (Algorithm 3, Lines 27 - 33).
Hence, the number of clusters is equal to the number of SCDs in the end. As
hyperparameter, the number of SCDs to estimate K is specified. Alternatively, K

can be specified by a factor to multiply with the initial number of sentences in the

33

4. USEM – UnSupervised Estimation of SCDs

corpus, e.g., the factor 0.25 sets the number of SCDs to a quarter of the sentences in
the corpus. Furthermore, there are techniques to estimate a good number of cluster
for K-Means on the corpus [PM+00].

DBSCAN Another well-know clustering technique is DBSCAN [EKSX96]. In con-
trast to K-Means, DBSCAN is able to detect concave structures in data and works
in a density based way. DBSCAN clusters two points together if both are in a neigh-
borhood, the distance making up a neighborhood is defined by the hyperparameter
ε. A cluster then grows by adding all points in the neighborhood to the same cluster.
Additionally, there is a minimum samples threshold ms which defines the minimum
number of points needed to form a cluster.

We run DBSCAN on the cosine similarity matrix Sδ(D) and again merge the rows of
the matrix included in the same cluster (Algorithm 3, Lines 27 - 33).

Comparing the three methods, when using K-Means the number of SCDs to estimate
K has to be specified in beforehand. The greedy method and DBSCAN determine
the number of SCDs on their own. Though, the greedy method needs a similarity
threshold θ and DBSCAN ε and the minimum samples threshold ms.

We cannot predict which method works better for a given corpus. As typical for
greedy methods, we expect the greedy method working well for higher thresholds
and more SCDs to estimate, while for smaller thresholds and a small number of
SCDs, the greedy method will miss the global optimum.

4.2.2. Model Selection for SCD Matrices

This subsection introduces a model selection approach for SCD matrices to auto-
matically select the best method with the best hyperparameters for USEM.

First, we have to determine what a good SCD matrix is and define a quality score
to represent the quality of an SCD matrix estimated by USEM. This score needs to
be calculated based on the estimated SCD matrix. Hence, possible input values are
the word distributions and the referenced sentences for each SCD. However, there is
no supervision and we do not have any ground truth to validate the SCDs against.
Thus, we have to use quantitative attributes of the estimated SCD matrices.

Each SCD references a number of sentences and we can use these numbers of ref-
erences to measure the quality of a matrix. We argue that a good SCD references
a smaller amount of sentences, i.e., a reference to 100 or more similar sentences in
the corpus is less beneficial for a human working with the corpus than a reference to
fewer sentences. Additionally, an SCD referencing only one or two sentences is not

34

4.2. Unsupervised Estimation of SCDs
Fr
eq
ue
nc
y
of
N
um
be
ro
fR
ef
.S
en
te
nc
es

Number of Referenced Sentences

Figure 4.1.: Desired optimal distribution of the number of referenced sentences
for an SCD matrix. A histogram depicting the different numbers of sentences
referenced in an SCD matrix should show a similar course.

really beneficial either. Based on these deliberations, we assume that the distribu-
tion of the number of referenced sentences for an SCD matrix shown in Figure 4.1
is optimal. Similar to a histogram, on the x-axis the number of referenced sentences
for the SCDs is displayed and on the y-axis the desired frequencies of each number
of sentences are displayed. We omit the values on the axes because the actual values
are not of relevance here—the course of the graph is the crucial point. For the sake
of completeness: The graph shows a discretized normal distribution with mean 10
and a standard derivation of 15 in the interval from 0 to 100.

Returning to the quality score of a matrix, we need a possibility to compare the
distribution of different numbers of sentences referenced in an SCD matrix with
the assumed optimal normal distribution. Therefore, we scale the distribution of
different numbers of sentences to the interval from 0 to 100. Furthermore, we dis-
cretize the normal distribution. Afterwards, the distance of both distributions can
be calculated with the Hellinger distance [Hel09]

HD(u, v) =
1√
2

√
√
√
√

k∑

i=1

(
√

ui −
√

vi)2,

where u and v represent a vector of each distribution. By calculating 1− HD(u, v)
this distance is converted to a similarity score representing an SCD matrix’ quality.
Given this quality score based on the Hellinger distance, we now can select the best
SCD matrix given a set of matrices trained by USEM.

35

4. USEM – UnSupervised Estimation of SCDs

Algorithm 4 SCD Matrix Model Selection

1: function EstimateBestMatrix(D)
2: Input: Corpus D
3: Output: Best SCD-word distribution matrix δ(D)
4: simbest ← 0
5: δbest ← Nil ▷ Iterate all methods
6: for each method m ∈ {Greedy, K-Means, DBSCAN} do
7: ▷ Take a set of hyperparameters depending on method
8: if m = Greedy then
9: H ← (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1) ▷ Values of θ

10: if m = K-Means then
11: M ← ∑

d∈D Md ▷ Number of sentences in D to calculate K values
12: H ← (⌊M · 0.8⌋, ⌊M · 0.6⌋, ⌊M · 0.4⌋, ⌊M · 0.3⌋, ⌊M · 0.2⌋, ⌊M · 0.1⌋)
13: else
14: H ← ((0.3, 1), (0.5, 10), (0.5, 5), (0.5, 2), (0.7, 10)) ▷ Tuples of ε, ms

15: for each hyperparameter h ∈ H do
16: δ(D)← USEM(D, m, h) ▷ Run USEM
17: ▷ Calculate score using Hellinger distance to normal distribution
18: sim← 1− HD(Scale([0, 100], δ(D)),N ([0, 100], µ = 10, σ2 = 15))
19: if sim > simbest then
20: simbest ← sim

21: δbest ← δ(D)

22: return δbest

36

4.3. Evaluation

The entire model selection approach is described by Algorithm 4. The algorithm
takes a corpus and returns the best SCD matrix. In Line 6 it starts with iterating
over all three methods of USEM. Depending on the method in Lines 8 - 14 different
sequences of hyperparameters H to try are chosen. These hyperparameters shall
cover a wider range of possibly good hyperparameters for the corpus. Through the
for loop starting in Line 15 for each method and each previously chosen hyperpa-
rameter in H USEM estimates an SCD matrix for corpus D. Afterwards, in Line
18 the resulting SCD matrix is scored using the Hellinger distance after scaling the
result as described above. Finally, Line 22 returns the SCD matrix resulting in the
highest quality score.

So far, we have introduced USEM including a model selection approach for the
resulting SCD matrices. Next, we describe and discuss the workflow, dataset, and
implementation used in our evaluation along with the results comparing USEM
against LDA.

4.3. Evaluation

After we have introduced USEM with its three methods, we present an evaluation.
First, we describe the used corpus and evaluation metrics. Finally, we present the
results of the evaluation and demonstrate the performance of USEM in comparison
to LDA.

4.3.1. Dataset

In this evaluation we use the Bürgerliches Gesetzbuch (BGB)1, the Civil Code of
Germany, in German language as corpus. Therefore, OpenIE [AJPM15] cannot be
used and thus the BGB is an example where we could benefit from USEM. The
BGB is freely available and can be downloaded as an XML file. Therefore, it is
easily parsable and processable. As the corpus is a law text it consists of correct
language, i.e., punctuation and spelling follow the orthographic rules. Thus, less
preprocessing and no data cleaning is needed. Furthermore, the words used in text
documents have a clear meaning and mostly the same words are used instead of
using synonyms.

The entire corpus consists of 2 462 law paragraphs and overall 8 020 sentences which
are used as SCD windows. Each law paragraph contains between 1 and 45 sentences

1https://www.gesetze-im-internet.de/bgb/, English translation https://www.

gesetze-im-internet.de/englisch_bgb/

37

https://www.gesetze-im-internet.de/bgb/
https://www.gesetze-im-internet.de/englisch_bgb/
https://www.gesetze-im-internet.de/englisch_bgb/

4. USEM – UnSupervised Estimation of SCDs

with an average of 3.3 sentences. The vocabulary consist of 5 294 words, where each
sentence is between 1 and 51 with an average of 10.9 words long.

4.3.2. Metrics

Topic models are trained in an unsupervised way using statistical methods, thus,
the topics gained by LDA are statistically optimized but may not match human
judgement of good topics. In general, automatically evaluating the quality of a
model from a human point of view is a difficult task. A common measure to eval-
uate the interpretability of topics regarding human judgement is coherence. Röder
et al. [RBH15] compare and evaluate multiple coherence measures against human
judgement as gold standard. The authors gain the best results using the CV mea-
sure. However, due to negative correlations and problems reproducing the CV values
in their paper, Röder does not recommended to use the CV coherence any more2.
Therefore, in our evaluation we use the UMass coherence calculated using Gensim’s
coherence model.

As already stated in Subsection 4.2.2, the number of referenced SCD windows per
SCD is relevant. For example, having 1 000 SCD windows and 100 SCDs, each SCD
should have a similar number around 10 referenced SCD windows. It would be bad, if
99 SCDs reference 1 window each and the 1 remaining SCD references the remaining
901 windows. Therefore, we evaluate the number of referenced windows per SCD.
Besides showing all numbers of referenced windows, we also show the numbers only
for SCDs with two or more referenced windows, i.e., we interpret SCDs with only
one referenced window as an irrelevant SCD and omit those SCDs.

For LDA an evaluation of referenced documents per topic is not necessary, as the
training ensures a similar number of referenced topics per document.

4.3.3. Workflow and Implementation

USEM is implemented using Python and runs inside a Docker container. The im-
plementation uses the libraries Gensim3, NumPy4, and NLTK5. The evaluation of
USEM follows this workflow:

2“The usage of the CV coherence is not recommended anymore!”, stated on
https://github.com/dice-group/Palmetto/wiki/How-Palmetto-can-be-

used/b1bb4cc5ed63171b85fb2a055c198a087b556837, version 14. July 2021
3https://radimrehurek.com/gensim/
4https://numpy.org/
5https://www.nltk.org/

38

https://github.com/dice-group/Palmetto/wiki/How-Palmetto-can-be-used/b1bb4cc5ed63171b85fb2a055c198a087b556837
https://github.com/dice-group/Palmetto/wiki/How-Palmetto-can-be-used/b1bb4cc5ed63171b85fb2a055c198a087b556837
https://radimrehurek.com/gensim/
https://numpy.org/
https://www.nltk.org/

4.3. Evaluation

(i) Extract the law paragraphs from the BGB’s XML file and divide each para-
graph into its sentences, which are then used as initial SCD windows.

(ii) Lowercase all characters, tokenize the sentences into words, stem the words,
and eliminate stop words from a wordlist containing 232 German words. These
four tasks are called preprocessing tasks. Preprocessing a text of a document
transforms the text in a more digestible form for machine learning algorithms
and increases their performance [VIN15].

(iii) Form an initial SCD matrix where each row contains the word probability
distribution for one sentence of the corpus.

(iv) Apply USEM with one of the three methods greedy, K-Means, or DBSCAN to
detect similar rows in the SCD matrix. Afterwards, merge the similar rows or
the rows in the same cluster by summing the distributions’ values.

We run each method with different hyperparameters influencing the number of
SCDs estimated. To be able to show the results of all methods in one figure, we
represent the results by the number of SCDs estimated. We show this number
of SCDs by the reduction of the number of windows in percent, i.e., if an initial
SCD matrix of 8 020 is reduced to 802 rows, the matrix would be reduced by
90 %. For example, in this case K would be 802 for the method K-Means.

(v) Calculate the UMass coherence using Gensim for the newly estimated SCD
matrix on the corpus. Hereby, for each SCD the word probability distribution is
used to determine the 20 most probable words of the referenced SCD windows.
For each SCD these 20 words are interpreted as the SCD’s topic.

For comparison, we train two topic models by LDA using Gensim and the hyper-
parameters α = 0.01 and β = 0.05. Small α and β lead the model to assign each
document a single topic with a high probability, this matches the idea of associating
an SCD window with one SCD. We train models with different numbers of topics and
represent the number of topics by the reduction of the number of documents given
to the model in percent, analogously to the reduction described in (iv) previously.

LDA Windows: This topic model is trained on the 8 020 sentences as documents.
Therefore, the model’s document topic distributions allow to determine the topic of
each sentence and thus the model’s topics are comparable to the SCDs referencing
multiple sentences in the corpus. However, LDA is not designed to be trained with
very short documents like single sentences.

39

4. USEM – UnSupervised Estimation of SCDs

−15

−10

0 25 50 75

Reduction of Number of Windows in Percent

U
M

as
s

S
co

re
 (

G
en

si
m

)

DBSCAN Greedy by Similarity K−Means LDA (Documents) LDA (Windows)

Figure 4.2.: UMass coherence of the three methods using USEM and the co-
herences of both topic models trained using LDA for comparison. The reduction
of the number of windows in percent represents the number of SCDs.

LDA Documents: This topic model is trained on the 2 462 law paragraphs as
documents and applies LDA in its typical fashion with medium sized documents.
However, using the document topic distributions of this model it is not possible to
determine the topic of each sentence, as each of the model’s documents contain more
than one sentence.

Again, we calculate the UMass coherence for each topic model directly using Gen-
sim’s functionality.

4.3.4. Results

In this section, we present the results gained using USEM and the previously de-
scribed workflow.

In Figure 4.2, the coherences of the three methods using USEM and both topic
models are shown. The UMass scores calculated by Gensim are negative, higher
values are better. On the left side, the reduction of the number of windows is small,
thus many SCDs are created. Going to the right, the number of SCDs decreases,
e.g., the rightmost triangle of greedy similarity represents 834 SCDs gained from
initially 8 020 windows.

The lines of DBSCAN, greedy similarity, K-Means, and LDA Documents are all
close together, while LDA Windows shows poor results far below all other lines. This
observation demonstrates that LDA Windows is not capable of estimating SCDs in

40

4.3. Evaluation

1

10

100

1000

0 25 50 75

N
u

m
b

er
 o

f
W

in
d

o
w

s
p

er
 S

C
D

K−Means

1

10

100

1000

0 25 50 75

Reduction of Number of Windows in Percent

Greedy by Similarity

1

10

100

1000

0 25 50 75

DBSCAN

1

10

100

1000

0 25 50 75N
u

m
b

er
 o

f
W

in
d

o
w

s
>

 1
 p

er
 S

C
D K−Means

1

10

100

1000

0 25 50 75

Reduction of Number of Windows in Percent

Greedy by Similarity

1

10

100

1000

0 25 50 75

DBSCAN

Figure 4.3.: Number of windows referenced by one SCD for the three different
methods of USEM. In the lower row, SCDs referencing only one window are
omitted.

an unsupervised manner, because the windows used as documents are too small.
LDA Documents, however, shows the UMass score a good topic model achieves on
the BGB, and USEM using K-Means achieves similarly good values. USEM works
well with greedy similarity and less reduction of windows, but K-Means becomes
better for more reduction. DBSCAN is quite unstable and the amount of reduction
is difficult to configure using the hyperparameters ε and number of minimum samples
ms. Although, the coherence values of DBSCAN are good, in Figure 4.3 we later
see why DBSCAN is not a good choice.

To summarize, using USEM with K-Means yields coherences on par with LDA.
However, LDA is not capable of estimating SCDs, which is what USEM is designed
for.

In Figure 4.3 for each of the three methods two plots are shown. In the upper row,

41

4. USEM – UnSupervised Estimation of SCDs

for each percentage of reduction the numbers of referenced windows are shown by
boxplots on a logarithmic scale. The lower row shows the same, but SCDs referencing
only one window are omitted. We focus on the lower row: For K-Means and greedy
similarity, most SCDs reference less than 10 windows, which is a good number of
references. However, there are also many outliers referencing more windows. For
K-Means the largest number of references is 952 and 1 741 with greedy similarity.
An SCD referencing 1 741 windows references 21 % of the corpus and it is hard to
imagine that 21 % of the corpus share the same concept. Again, these numbers
demonstrate that greedy similarity does not work well with a high reduction of the
number of windows.

Using DBSCAN there are more SCDs referencing a large number of windows, which
also implies that there are many SCDs referencing only one window. Also, the
largest number of references is 3 832 for DBSCAN, which means that a single SCD
references 48 % of the corpus. An SCD referencing nearly half of the corpus cannot
be good, because only this single SCD can reference 48 % of the sentences, while no
other SCD can reference the same sentences.

Summarized, K-Means shows an overall very good distribution of referenced windows
per SCD and greedy similarity is good, too. DBSCAN should not be used because
it generates an SCD that references almost half of the corpus.

4.4. Related Work

Before we conclude the chapter, we take a look at related work. USEM can be
understood as a technique for unsupervised corpus annotation. Similarly, Open-
IE [AJPM15] extracts spo-triples from sentences which may be used as annotation.
The evaluation of [BBG+21a] and [KBBM21] use OpenIE and Wiktionary6 to get
an initial set of SCDs. However, both techniques are still supervised to some extent:
OpenIE is trained on English language corpora and Wiktionary is composed by
humans.

In the context of SCDs, we interpret an SCD as a corpus annotation and in context
of this chapter, an SCD annotates multiple sentences of similar concepts all over
the corpus’ text documents. Topic models assign a distribution over the topics,
estimated by the model itself, to each text document in the corpus, and each topic
is characterized by a distribution of occurring words in the topic’s documents. Thus,
similarly to the topics of a topic model, USEM associates text documents with SCDs
representing concepts. LDA [BNJ03] is a generative model representing documents
as a probability distribution over topics. Many extensions have been proposed to

6https://www.wiktionary.org/

42

https://www.wiktionary.org/

4.4. Related Work

optimize the performance of LDA, e.g., the author-topic model [RZGSS04], which
extends LDA to couple each author of a document with a multinomial over words,
and the dynamic topic model [BL06], which allows for analyzing topic changes over
time.

Documents assigned with a similar distribution over the topics, are assumed to be
similar in terms of an topic model. However, LDA’s perception of similar documents
may not always match the human perception of similar documents [TRH16].

USEM uses greedy similarity, K-Means, or DBSCAN to identify similar sentences.
Another technique to find similar sentences in a corpus of text documents is Sim-
ilar Short Passages Identifier (SiSP) [SN08]. SiSP first extracts features from the
sentences and then creates clusters of similar sentences. The authors evaluate the
clusters found by SiSP against human-labeled sentences. USEM may be used with
SiSP, however, SiSP was developed for the Portuguese language only.

A further idea is to cluster sentences hierarchically [KR15]. In difference to the
clustering techniques used by USEM, the authors start with a sentence in the corpus
and build a hierarchical clustering from this sentence. The hierarchical clustering
has a tree-like structure, i.e., after starting from the first sentence, the tree branches
across multiple levels to different concepts in the corpus.

Clustering can not only be used to identify similar sentences, it can also help to
annotate sentences with their sentiment [HSE11]. The authors assume that two
sentences in the same cluster have a similar sentiment and thus they can enrich
the number of labels in a sparsely labeled corpus. In cases, where short sentences
do not contain enough shared words to apply the cosine similarity, a ranking of the
suitable clusters for each sentence can be used [YCZS14] to increase the performance
of clustering techniques.

Text summarization is another field of research, where clusters of similar sentences
are used. Thereby, the idea is to remove most of the similar sentences and only keep
one sentence from each cluster. SimFinder [HKH+01] clusters small pieces of text,
like sentences, into tight clusters. Unlike USEM, SimFinder does not work in an
unsupervised way, as it needs feature words in beforehand.

Another approach for text summarization is to extract the word vectors from each
sentence and weight each word using techniques in the spirit of tf.idf [Ram03].
Then, the weighted word vectors are clustered using the cosine similarly with K-
Means [Llo82], again, from each cluster one sentences makes up the summary [SK17].
This approach overlaps with USEM in using word vectors, the cosine similarity, and
K-Means. However, the authors only pursue the goal of text summarization, or in
other words, extractive summaries, while USEM uses three methods and represents
the concepts and topics of a corpus in the estimated SCD matrix.

43

4. USEM – UnSupervised Estimation of SCDs

4.5. Interim Conclusion

This chapter introduces USEM with three methods, namely K-Means, greedy simi-
larity, and DBSCAN. USEM estimates SCD matrices for corpora of text documents
in an unsupervised manner. Thereby, USEM detects sentences of similar concepts
or topics in a corpus and then associates the same SCD to these similar sentences.
Additionally, a model selection approach is introduced to detect the best method
and hyperparameters of USEM for a corpus. Together with the model selection
approach, USEM solves Problem I (Subsection 3.2.1) we came across building the
SCD-based IR agent.

An SCD matrix for a corpus can be interpreted as a topic model of the corpus.
Hence, the well-known LDA is used to evaluate the performance of USEM. We
use the UMass coherence to evaluate the quality of each model and show, that
especially USEM using K-Means performs as good as LDA. Generally, without a
focus on SCDs, USEM provides a new and powerful technique to create a topic
model for a corpus. Because DBSCAN associates too many sentences with the same
SCD, DBSCAN is not suitable for most use-cases.

In this chapter, we put efforts in finding the referenced sentences of the SCDs.
With USEM we get the word probability distribution and the referenced sentences
for each SCD. Though, the SCDs estimated by USEM still have an empty set of
additional data C. The next chapter focusses on estimating content for C, i.e., short
descriptions or labels for the SCDs.

44

5. LESS is More: Label Estimation for SCDs
without Supervision

The sections of this chapter are largely taken verbatim from:

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: LESS is More:
LEan Computing for Selective Summaries in KI 2023: Advances in Ar-
tificial Intelligence. Lecture Notes in Computer Science, Springer
https://dx.doi.org/10.1007/978-3-031-42608-7_1

Magnus Bender developed the initial idea, conducted the experiments, and wrote the
manuscript of the publication. The other three authors fundamentally supervised
the research by discussing ideas, proofreading the manuscript multiple times, and
giving feedback.

5.1. Introduction

In this chapter, we present a solution to Problem III (Subsection 3.2.4) we came
across when building an SCD-based IR agent. USEM estimates initial SCDs for
clustering similar sentences across the agent’s—possibly tiny—corpus. However, a
cluster is only a set of similar sentences and it is difficult to describe such set to a
human user in a comprehensible way. For this purpose, a label or a short description
helps the agent to present retrieved clusters and its SCDs more comprehensibly
to users. Therefore, each SCD should be associated with a label in addition to
the referenced similar sentences. In accordance with the intentions of SCDs, the
computation of such labels shall require little computational resources and shall
work in an unsupervised way even with tiny corpora.

State-of-the-art LLMs might be applied to compute the labels. However, LLMs
like BERT [DCLT19] need specialized hardware to run fast and huge amounts of
computational resources resulting in high energy consumption [SGM19]. In addition,
BERT uses a pre-trained model that must be trained beforehand on large amounts
of data while we are interested in an approach working even with less data, e.g.,
tiny user supplied corpora.

45

https://dx.doi.org/10.1007/978-3-031-42608-7_1

5. LESS is More – Label Estimation for SCDs without Supervision

Existing approaches solve the problem of tiny corpora, e.g., by unifying training data
for multiple tasks, like translation, summarization, and classification. Together, the
unified data is sufficient to train the model and the model becomes multi-modal for
solving the different tasks of the training data. Elnaggar et al. [EGGM18] create such
a multi-modal model, and work, similar to our evaluation, with documents about
German law, but we are interested in an unsupervised approach requiring no train-
ing data at all. In general, a label for an SCD can be estimated by a summarization,
i.e., the label is the summarization of a cluster of similar sentences. TED [YZG+20]
is an unsupervised summarization approach, but it uses a transformer architec-
ture [VSP+17] which is the basis for most LLMs. Thus, TED still needs specialized
hardware to run fast and huge amounts of computational resources.

Extractive document summarization is a subfield of text summarization, a field in
which a summary is created by selecting the key sentences from a document [MC17,
ZLWZ18]. However, we are interested in calculating a label for a cluster of similar
sentences and not identifying the key sentences of a document. Topics in topic
models consist of representative words and each topic represents one topic of the
corpus, like one cluster of similar sentences. There exist approaches for computing
labels for topics. However, many approaches need supervision [LGNB11, HEGM13,
BLB16].

The main problems with the above-mentioned approaches are the need for exten-
sive training data and the need to compute on specialized hardware. Our solution,
LESS, is an lightweight approach for Label Estimation for SCDs without Supervi-
sion. LESS uses the SCD estimated by USEM and creates labels that can be used to
describe the SCDs to humans. We assume that the concept of each SCD is implicitly
defined by the content of the sentences referenced, and each label describes the con-
cept of an SCD: So, LESS identifies the best fitting sentence. Together, LESS and
USEM associate any corpus with labelled SCDs, where each SCD references similar
sentences of the same concept, has a label describing its concept, and an SCD-word
distribution. LESS in conjunction with USEM neither needs specialized hardware
nor additional training data. In the evaluation, LESS computes labels with less time
and computational resources while providing similar results as BERT.

The remainder of this chapter is structured as follows: First, we formalize the prob-
lem of computing labels for SCDs and provide our solution LESS. Second, we eval-
uate the performance of LESS against the well-known BERT and demonstrate that
LESS is on par with an approach using BERT, while being lean and requiring less
resources and no pre-trained models. Finally, we conclude with an interim sum-
mary.

46

5.2. Computing Labels for SCDs

SCD
Word

Distribution

Referenced
Sentences

Additional Data
Computed
Label

... More Data

Figure 5.1.: An SCD ti with its intra-SCD relations to various parts forming
the SCD itself. LESS uses the word distribution and the referenced sentences to
compute labels.

5.2. Computing Labels for SCDs

For a better understanding of the proposed approach, we first take a look at the
different relations among SCDs. Afterwards, we introduce how LESS solves Problem
III of computing an SCD’s label.

5.2.1. Relations and SCDs

There are two different types of relations among SCDs. First, there are relations
between SCDs, e.g., to model complementarity between two SCDs (considered in
Chapter 8). Second, and faced in this chapter, are the relations within an SCD
to its various parts, which together form the SCD. The SCD ti has the SCD-word
distribution (vi,1, ..., vi,L), the matrix’ row, and the referenced sentences {s1, ..., sS}.
In this chapter, we are interested in the label li. The label li is part of SCD’s
additional data Ci, in this chapter the only element in Ci. The various parts which
form the SCDs together can be seen in Figure 5.1.

Therefore, our setting is that there are intra-SCD relations to various parts and
inter-SCD relations to other SCDs. Additionally, relations can be added by storing
data or references in Ci, e.g., inter-SCD relations may be added as references to
other SCDs (considered in Chapter 8).

5.2.2. Labels to Select From

Given that LESS builds upon USEM, the SCD ti, consisting of the SCD-word distri-
bution (vi,1, ..., vi,L) and the referenced sentences {s1, ..., sS}, is the input for which
LESS computes a label. Thus, the label of the SCD needs to be computed only
based on these two parts or additional supervision would be needed. In general, a

47

5. LESS is More – Label Estimation for SCDs without Supervision

good label could be a short summary given the word distribution of the SCD, based
on the assumption that the word distribution generates the sentences. Therefore,
we look for a short sentence, i.e., without many filler words, that is close to the word
distribution. We define a utility function in the next Subsection 5.2.3 to measure
how well a candidate for a label fits the concept described by an SCD.

The problem to be solved can be formulated as follows:

li = arg max
lj∈ all possible labels

Utility(lj, ((vi,1, ..., vi,L), {s1, ..., sS}) of ti)

The computed label li for ti (currently consisting of the word distribution and the
referenced sentences) is the label with the highest utility. Now, there are two points
to address (i) is it not possible to iterate over all possible labels and (ii) what is a
label with a high utility.

For the first point, we have to specify how a label should look like. A label is a
sequence of words like a short description. We argue that a sentence straight to
the point, i.e., without many filler words, is a good description and thus a good
candidate for a label. Furthermore, each SCD has a set of referenced sentences
which together represent the concept which is represented by the SCD. Thus, we
use the referenced sentences {s1, ..., sS} as set of possible labels for each SCD.

Using sentences from the corpus and not generating sentences, e.g., with an LLM
like GPT [BMR+20], has multiple benefits: No pre-trained model or training data is
needed while the sentences used as labels will still match the style of writing in the
corpus. Additionally, no computational resources for GPT are needed and the sen-
tences must not be checked for erroneous or other troublesome content, e.g., LLMs
may degenerate into toxic results even by seemingly innocuous inputs [GGS+20].

The problem can now be reformulated as:

li = arg max
sj∈{s1,...,sS}

Utility(sj, (vi,1, ..., vi,L))

The computed label li for SCD ti is the referenced sentence of the SCD which
provides the highest utility. The utility function now only gets the word distribution
as input because the referenced sentences are already used as set of possible labels.
Thus, LESS computes for each sentence its utility given the word distribution and
takes the best. Again, an LLM like BERT may be used to calculate the utility.
However, we are interested in a lean computing approach.

48

5.2. Computing Labels for SCDs

5.2.3. Utility of Sentences as Labels

The utility describes, by a value between 0 and 1, how well a sentence fits the
concept described by the SCD. The referenced sentence with the highest utility is
assumed to be a good label for the SCD in human interception.

As mentioned before, we assume that each SCD’s word distribution generates the
referenced sentences, then the best label for this SCD is a sentence that is most
similar to the word distribution, in terms of the concept represented. Thus, the
cosine similarity allows to determine the similarity between two vectors and a word
distribution can be interpreted as a word vector. Thus, we define the utility func-
tion as the cosine similarity between the SCD-word distribution and the referenced
sentence’s word vector. In addition, the cosine similarity has proven to be a good
choice for identifying sentences with similar concepts by using their word distribu-
tions: The MPS2CD algorithm uses the cosine similarity to identify the best SCD
for a previously unseen sentence based on its word vector. Thus, we use the most
similar referenced sentence by cosine similarity as the computed label of an SCD.

Altogether, the lean computation of a label for an SCD can be formulated as:

li = arg max
sj∈{s1,...,sS}

s⃗j · vi

∥s⃗j∥2 · ∥vi∥2

The word vector of each referenced sentence sj is represented by s⃗j and the SCD-
word distribution by vi. In general, the cosine similarity yields results between −1
and 1, in this case all inputs are positive and thus the utilities are between 0 and 1
only.

Finally, the computed sentence to become the label may be slightly post-processed,
s.t., it becomes a sentence straight to the point without many filler words. This can
be achieved by removing stop words.

5.2.4. Algorithm LESS

Based on the two previous subsections, LESS is formulated in Algorithm 5. LESS
first estimates the SCD matrix using USEM, a step that might be skipped if an
SCD matrix is supplied, and initializes an empty SCD set g(D). In Lines 6 - 11, the
label li is computed for each of the K SCDs ti iterating over the rows of the SCD
matrix. First, the SCD-word distribution vi is extracted and also all candidates for
the label—the referenced sentences of each SCD—are fetched from the corpus. In
Line 9 the label is computed as described in Subsection 5.2.3. Finally, the associated
SCD ti is composed, containing additional data in Ci, namely a computed label li
and the referenced sentences, and ti is added to the SCD set g(D).

49

5. LESS is More – Label Estimation for SCDs without Supervision

Algorithm 5 LEan computing for Selective Summaries

1: function LESS(D)
2: Input: Corpus D
3: Output: SCD matrix δ(D); SCD set g(D) containing labels li for SCDs ti

4: δ(D)← USEM(D) ▷ Run USEM
5: g(D)← {} ▷ Initialize empty SCD set g(D)
6: for each row of matrix i = 1, ..., K do
7: vi ← g(D)[i] ▷ Extract SCD-word distribution
8: {s1, ..., sS} ← ReferencedSentences(i) ▷ Get referenced sentences

9: li ← arg maxsj∈{s1,...,sS}

s⃗j · vi

∥s⃗j∥2 · ∥vi∥2

▷ Compute label

10: ti ← ({li}, {s1, ..., sS}) ▷ Compose associated SCD with computed label
11: g(D) ∪ {ti} ▷ Add to SCD set

12: return δ(D), g(D)

Next, we present an evaluation of LESS and compare the results to an approach
using BERT for computing labels for SCDs.

5.3. Evaluation

After we have introduced LESS, we present an evaluation. First, we describe the
used corpus, two approaches using BERT to compute labels, and the evaluation met-
rics. Afterwards, we present the results of the evaluation and show the performance
and runtime of LESS in comparison to BERT.

5.3.1. Dataset

In this evaluation we use the Bürgerliches Gesetzbuch (BGB)1, the Civil Code of
Germany, in German language as corpus. The BGB does not provide enough train-
ing data to train a specialized BERT model. Additionally, BGB does not provide
labels which can be used for supervised training.

Given the vast amount of text written in English and the fact that English is the
language of computer science, most natural language processing techniques work
better with the English language. The BGB is therefore a difficult dataset and a
good example to use with approaches such as LESS that require only little data and

1https://www.gesetze-im-internet.de/bgb/, English translation https://www.

gesetze-im-internet.de/englisch_bgb/

50

https://www.gesetze-im-internet.de/bgb/
https://www.gesetze-im-internet.de/englisch_bgb/
https://www.gesetze-im-internet.de/englisch_bgb/

5.3. Evaluation

no supervision. To apply BERT on the BGB, we have to rely on external pre-trained
models that have been trained on other data.

As said before, the BGB is freely available and can be downloaded as XML file.
Therefore, it is easily parsable and processable. As the corpus is a law text it
consists of correct language, i.e., punctuation and spelling follow the orthographic
rules. Thus, little preprocessing and no data cleaning is needed.

The entire corpus consists of 2 466 law paragraphs and overall 11 904 sentences which
are used as SCD windows. Each law paragraph contains between 1 and 49 sentences
with an average of 4.83 sentences. The vocabulary consists of 5 315 words, where
each sentence is between 1 and 35 words long with an average of 7.36 words. These
numbers are different to Subsection 4.3.1 because we changed the preprocessing and
partitioning of sentences and updated the version of the BGB.

5.3.2. Approaches using BERT

We evaluate LESS against two approaches using BERT to compute labels for SCDs.
Thereby, BERT is compared to LESS in terms of runtime and actual content of the
labels.

BERT is used as a different utility function to select the best sentence as label from
the set of referenced sentence for each SCD. We do not use freely generated texts,
e.g., by GPT, as labels because these labels need to be checked for erroneous content
as already stated in Subsection 5.2.2. Additionally, comparing freely generated text
to a label selected from a set of referenced sentences is like comparing apples and
oranges.

The two approaches using BERT work as follows:

BERT Vectors works similar to LESS, but uses the embeddings produced by BERT
instead of the word distributions of each sentence. Throughout all referenced
sentences an average embedding of each SCD is calculated. Then the referenced
sentence with the most similar embedding to the average embedding in terms
of cosine similarity is used as label. Thereby, the embedding of the CLS token,
representing the entire sentence instead of a single token, for each sentence
from the pre-trained model bert-base-german-cased2 is used.

BERT Q&A uses the ability of BERT to answer a question. Thereby, BERT gets
a question and a short text containing the answer. The assumed answer is
then highlighted by BERT in the short text. We use the fine-tuned model

2https://huggingface.co/bert-base-german-cased

51

https://huggingface.co/bert-base-german-cased

5. LESS is More – Label Estimation for SCDs without Supervision

bert-multi-english-german-squad23 and compose our answer and
short text by concatenating all referenced sentences of each SCD. Hence, BERT
highlights a referenced sentence or a part of one while the question consisting
of all referenced sentences asks BERT to represent all sentences.

As we do not have supervision for our corpus, we cannot fine-tune BERT models
for label computation.

5.3.3. Hardware and Metrics

LESS and both approaches using BERT run in a Docker container. The evalua-
tion with off-the-shelf hardware is done on a machine featuring 8 Intel 6248 cores
at 2.50GHz (up to 3.90GHz) and 16GB RAM, referred to as CPU. However, this
virtual machine does not provide a graphics card for fast usage of BERT. Thus, all
experiments using BERT are run as well on a single NVIDIA A100 40GB graphics
card of an NVIDIA DGX A100 320GB, referred to as GPU. Beneath, the NVIDIA
Container Toolkit is used to run our Docker container with NVIDIA CUDA sup-
port.

The runtime of the approaches is measured in seconds needed to compute all labels
for the BGB. Thereby, the initialization of the BERT models is excluded but the
necessary transformations of the referenced sentences are included. These transfor-
mations include the tokenization for BERT and composition of word distributions
for LESS. SCDs referencing only a single sentence do not require a computation,
and the single sentence is used as label.

The performance is measured by the agreement between LESS and the results of each
of the two BERT-based approaches. Specifically, for one BERT-based approach,
all SCDs where BERT and LESS compute the same same label are counted and
divided by the total number of SCDs. We distinguish between considering all SCDs,
including those referencing only one sentence, or excluding those SCDs with only
one referenced sentence.

5.3.4. Workflow and Implementation

LESS and the BERT-based approaches are implemented using Python. The im-
plementations use the libraries Gensim4, NumPy5, and Huggingface Transformers6.

3https://huggingface.co/deutsche-telekom/bert-multi-english-german-

squad2
4https://radimrehurek.com/gensim/
5https://numpy.org/
6https://huggingface.co/docs/transformers/

52

https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2
https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2
https://radimrehurek.com/gensim/
https://numpy.org/
https://huggingface.co/docs/transformers/

5.3. Evaluation

LESS is optimized to run on a single core and does not offer multi-core capabilities.
BERT uses all available cores or a graphics card.

We evaluate LESS on ten similar SCD matrices. The SCD matrices are estimated
by USEM with methods greedy similarity and K-Means. Each method is run
with five different hyperparameters: 0.8, 0.7, 0.6, 0.5, 0.4 for greedy similarity and
0.8, 0.6, 0.4, 0.3, 0.2 for K-Means. The evaluation workflow for each of the ten ma-
trices follows:

(i) Run USEM and thus estimate the SCD matrix and all SCDs, lacking labels.
This step includes fetching the BGB’s XML file and running preprocessing
tasks [VIN15]. Depending on the hyperparameters USEM estimates between
2 159 and 10 415 SCDs for the corpus.

(ii) Run LESS to compute labels for the SCDs. Here, the runtime of LESS is
captured.

(iii) Run BERT Q&A and BERT Vectors to compute two more sets of labels for
the SCDs. Again, the runtime is captured, separately for each approach and
for CPU and GPU.

(iv) Calculate the agreement between LESS and BERT Q&A and BERT Vectors as
described in Subsection 5.3.3. Thereby, use the set of labels computed by each
BERT-based approach and LESS. There is practically no difference between
the labels computed by BERT on the GPU and on the CPU. Thus, we do not
differentiate between CPU and GPU in terms of agreement.

5.3.5. Results

In this section, we present the results gained using LESS in comparison to the
BERT-based approaches and the previously described workflow.

In the left part of Figure 5.2, the runtimes of LESS, BERT Q&A, and BERT Vectors
are displayed. The values are averaged over all ten evaluated SCD matrices and
are shown on a square root scale. Comparing both BERT-based methods, BERT
Vectors is always faster than BERT Q&A, especially when running on CPU. LESS
is on off-the-shelf hardware as fast as BERT Vectors on the A 100 GPU and always
faster than BERT Q&A. The different computational resources needed by BERT
and LESS are good to grasp by comparing the runtimes of on the CPU. LESS utilizes
only one core while BERT uses eight cores and still BERT is significantly slower.
Thus, LESS needs less time on less cores to compute the labels. Typically distilled
LLMs represent lean computing, but distilled LLMs still need to run on a GPU to
be fast, while LESS remains lean.

53

5. LESS is More – Label Estimation for SCDs without Supervision

0

50

100

150

200

250

CPU (1 Core) CPU (8 Cores) GPU (A 100)

S
e
c
o
n
d
s

LESS BERT Q&A BERT Vectors

0.00

0.25

0.50

0.75

1.00

SCDs (incl. 1 Sent.)SCDs (excl. 1 Sent.)

BERT Q&A BERT Vectors

A
gr
ee
m
en
t

Figure 5.2.: Left: Runtime of LESS, BERT Q&A, and BERT Vectors with a
square root scale. Right: Agreement of BERT Q&A and BERT Vectors (com-
pared to LESS respectively) divided by considering all SCDs or excluding those
with one referenced sentence.

In the right part of Figure 5.2, the agreements over all ten evaluated SCD matrices
are shown with boxplots. We divide between considering all SCDs or only SCDs
with more than one referenced sentence. There are no big differences between BERT
Q&A and BERT Vectors. Considering all SCDs gives very good agreements, which
is particularly important as we are interested in labels for all SCDs. At first glance,
the agreements considering only SCDs with more than one referenced sentence do
not look good but we have to look at the number of the referenced sentences of each
SCD.

In order to better rate the agreement values, we calculate the agreement for random
sentence, which is the theoretical agreement a random approach would result in.
This random approach randomly chooses for each SCD which referenced sentence
becomes the label, i.e., the agreement for random sentence is 0.1 for an SCD having
10 referenced sentences. In Figure 5.3, the agreement for random sentence is added
as baseline to rate the agreements of BERT and LESS. Besides random sentence,
we have the agreements for SCDs including single sentences and excluding single
sentences already known from Figure 5.2. The three agreements are displayed for
each of the ten SCD matrices and we do not differentiate between BERT Q&A and
BERT Vectors as the values do not show a relevant difference. Thus, LESS is able
to compute labels for all SCD matrices estimated by USEM and does not depend
on specific hyperparameters.

For the leftmost bar in Figure 5.3, randomly selecting a sentence from the clustered
sentences results in an agreement of around 0.35. By excluding SCDs with single

54

5.4. Interim Conclusion

0.00

0.25

0.50

0.75

1.00

SCDs (incl. 1 Sentence)SCDs (excl. 1 Sentence) Random Sentence

Different Matrices from USEM

A
gr
ee
m
en
t

Figure 5.3.: Theoretical average agreement of an approach that randomly se-
lects a sentence as label compared to the agreement of LESS and BERT.

sentences, LESS and BERT agree 68 % of the time and by including all SCDs nearly
all the time (97 %).

Implicitly, the agreement for random sentence shows the number of referenced sen-
tences the SCDs have. The SCD matrices on the left side of Figure 5.3 have fewer
referenced sentences per SCD as the ones on the right side. With an increasing
number of sentences, there are more sentences to select from and the computation
becomes more difficult, i.e., it is easier to correctly select an item from a set of three
than of ten items. This increasing difficulty to the right is also demonstrated by the
fact that all agreements become smaller to the right.

The agreement for random sentence is always clearly the lowest, with both other
agreements following at some distance. Thus, BERT and LESS achieve a high
level of agreement. In summary, LESS computes good labels requiring much less
computing resources and computing time.

5.4. Interim Conclusion

This chapter presents LESS and LESS is more. LESS is an unsupervised lean
computing approach to compute labels for SCDs. LESS works on any corpus and
does not require training data. LESS only needs clusters of similar sentences, which
are contained in SCDs and are estimated in an unsupervised way by USEM. Hence,
together with USEM, LESS can generate SCDs with labels for any corpus to help

55

5. LESS is More – Label Estimation for SCDs without Supervision

IR agents. We evaluate LESS against two approaches using an LLM, in this case
BERT. The evaluation shows that LESS requires significantly less computational
resources. Furthermore, LESS does not need any training data. Therefore, we
evaluate LESS in a setting, where no training data is available. Hence, we cannot
fine-tune a BERT model for our needs and evaluate LESS against two approaches
using already fine-tuned BERT models. The labels computed by the BERT-based
methods significantly coincide with those of LESS. Summarized, LESS computes
good labels needing less computational resources.

The techniques from the last two chapters give the SCD-based IR agent a possibility
to process user supplied corpora. The agent can compute SCDs with labels for any
corpus without needing additional data. The next two chapters focus on optimiz-
ing the computed SCDs and the labels by updating the matrix incrementally and
efficiently based on feedback of users.

56

6. FrESH:
Feedback-reliant Enhancement of SCDs

The sections of this chapter are largely taken verbatim from:

• Magnus Bender, Kira Schwandt, Ralf Möller, Marcel Gehrke: FrESH – Feed-
back-reliant Enhancement of Subjective Content Descriptions by
Humans in Proceedings of the Humanities-Centred AI (CHAI) Workshop at
KI2023, 46th German Conference on Artificial Intelligence, 2023
https://ceur-ws.org/Vol-3580/paper3.pdf (Slides: https://dx.
doi.org/10.25592/uhhfdm.13423)

The publication itself is based on Kira Schwandt’s bachelor thesis, which is written
in German. Magnus Bender and Ralf Möller fundamentally supervised the bachelor
thesis by discussing ideas, proofreading the manuscript multiple times, and giving
feedback. For the publication: Magnus Bender developed the initial idea and wrote
the manuscript in English based on the results of the bachelor thesis. Marcel Gehrke
supervised the research by proofreading the manuscript.

6.1. Introduction

Typically, in machine learning, a model is trained to perform specific tasks on the
model rather than directly on the data. Training a model is an expensive task. How-
ever, if data points later on have to be removed, our goal is to discreetly manipulate
the model instead of retraining it from scratch. For example, it may turn out that
an item from the data is erroneous or there may be privacy or copyright related
problems with an item. Additionally, the model may produce wrong results because
some item may be associated incorrectly. In all these cases, the item needs to be
removed from the data and the model. However, removing an item from a model
is a difficult task because the model only encodes the data and does not contain
the data in such a way that individual elements can be distinguished and removed.
Therefore, models are often retrained from scratch after items are removed from the
training data.

For different models, there are different approaches to avoid retraining from scratch,
e.g., for K-Means [Llo82, GGVZ19] or linear and logistic regression [ISCZ21]. The

57

https://ceur-ws.org/Vol-3580/paper3.pdf
https://dx.doi.org/10.25592/uhhfdm.13423
https://dx.doi.org/10.25592/uhhfdm.13423

6. FrESH – Feedback-reliant Enhancement of SCDs by Humans

common idea is to avoid retraining the model and instead updating the model by
applying an inverse operation that removes an item of the data from the model.

In this dissertation, we build an SCD-based IR agent. We identified Problem II
(Subsection 3.2.3) as the difficulty of updating the used SCDs on the basis of feed-
back: From the perspective of a human user of the agent, there may be a faulty
item in the IR agents response. In this situation, the human user may give feedback
to the agent and the agent needs to update its SCD matrix by removing the faulty
association between sentence and SCD. Hence, the SCDs should be updated and the
IR agent should not need to retrain the SCD matrix from scratch after the sentence
has been removed from the corpus.

To solve Problem II, this chapter provides the first part, FrESH, an approach for
Feedback-reliant Enhancement of Subjective Content Descriptions. The IR agent
may use FrESH to process feedback by removing a faulty sentence from the SCD
matrix and only needs to update the SCD the faulty sentence has been associated
with. In particular, FrESH can be used to remove sentences from the SCD matrix if
their content should be removed entirely, i.e., to keep Fake-News out of the corpus
or to remove copyright or privacy protected content.

Adding a feedback mechanism to the IR agent allows the users to improve their own
subjective model by enhancing an initial SCD matrix learned by USEM and LESS
on their corpus. For example, FrESH makes it easier for a scientist in the field of
humanities to build a custom SCD based model for their corpora. A corpus can be
automatically annotated with SCDs, and then it is optimized and corrected using
FrESH by feedback from the scientist. Without FrESH, it would not be possible to
optimize and correct a corpus automatically annotated with SCDs, thus requiring
more manual work by the scientist. Additionally, in the humanities corpora of
text documents are often rather small. Therefore, techniques like LLMs cannot be
applied in a considerable number of cases.

The remainder of this chapter is structured as follows: First, we formalize the prob-
lem of incorporating feedback by removing false associations of sentences with SCDs
in an SCD matrix. Afterwards, we provide three consecutive methods to solve the
problem and evaluate each. Finally, we conclude with an interim summary.

6.2. Incorporate Feedback

In this section, we present FrESH and thereby how to incorporate human feedback
to enhance an SCD matrix. For our method, we assume that the feedback exactly
states which sentence is falsely associated with its SCD, i.e., the human user may
click on a button remove sentence. Therefore, we consider the problem of removing

58

6.2. Incorporate Feedback

SCD matrix

Counts Distribution

Errors/

Feedback

Faulty sentences

and their SCDs
Method 1 Method 3

Only faulty

sentences
Method 2 Method 4

Figure 6.1.: The four different cases regarding the input data of FrESH.

a faulty sentence from an SCD matrix. This also removes the sentence from the
corpus, making FrESH useful for removing Fake-News and copyright or privacy
protected content, too.

In this chapter, we differentiate between two types of SCD matrices: The values
contain the counts of the words without normalization δ(D) or a normalized version
containing row-wise distributions of words δ∥·∥(D). Additionally, we differentiate
between the way the errors are contained in the feedback: Only a faulty sentence is
given as input or a faulty sentence together with its SCD is given. In both cases a
set p contains either sentences s or pairs of sentences s and SCDs t.

In total, we have four different cases regarding the input data of FrESH, which are
also shown in Figure 6.1. Next, we will consider each case and develop method 1 to
4 to solve each.

6.2.1. Method 1

The input consists of an SCD matrix containing the counts of the words and a set
p of faulty sentences with their associated SCDs. It is then possible to revert the
operations of SEM (Algorithm 1). SEM adds in Line 9 for each word in a sentence
the count of the word weighted by an influence value to the row of the matrix
representing the SCD. The first method (M1) reverses this addition by subtracting
the same value in Line 6 of Algorithm 6.

M1 inverts the operations of SEM. Therefore, an SCD matrix learned by SEM on
the corpus without p will be identical to an SCD matrix from which p was removed
by M1.

6.2.2. Method 2

The input consists of an SCD matrix containing the counts of the words and a set p

of faulty sentences. Hence, first the SCD for each faulty sentence needs to be found,

59

6. FrESH – Feedback-reliant Enhancement of SCDs by Humans

Algorithm 6 FrESH Method 1 (M1)

1: function FrESH-M1(δ(D), p)
2: Input: SCD matrix δ(D); Set of faulty sentences with SCDs p

3: Output: Updated SCD matrix δ(D)
4: for each (s, t) ∈ p do ▷ Iterate over faulty sentences with SCDs
5: for each wi ∈ s do ▷ Iterate over words
6: δ(D)[t][wi] −= I(wi, s) ▷ Assume uniform, i.e., I(wi, s) = 1

7: return δ(D)

Algorithm 7 FrESH Method 2 (M2)

1: function FrESH-M2(δ(D), p)
2: Input: SCD matrix δ(D); Set of faulty sentences without SCDs p

3: Output: Updated SCD matrix δ(D)
4: for each s ∈ p do ▷ Each faulty sentence
5: t = MPS2CD(δ(D), s) ▷ Use MPS2CD to get SCD of sentence
6: for each word wi ∈ s do ▷ Iterate over words
7: δ(D)[t][wi] −= I(wi, s)

8: return δ(D)

afterwards the sentence can be removed from the matrix as in M1. The MPS2CD
algorithm is used to find a most suitable SCD for a sentence from the available SCDs
in Algorithm 7 (M2).

Unlike M1, M2 does not guarantee to produce identical matrices. If a matrix is
first trained on a corpus with faulty sentences that are then removed by M3, the
resulting matrix may be different from a matrix trained directly on a corpus without
faulty sentences. This is caused by the fact, that MPS2CD is used to find a most
suitable SCD, which may not be the SCD used initially. However, MPS2CD works
quite accurately, so we expect only a small difference, which should not affect an
agent using SCDs.

6.2.3. Method 3

The input consists of an SCD matrix δ∥·∥(D) containing row-wise distributions of
words and a set p of faulty sentences with their associated SCDs. The difficulty is to
revert the operations of SEM on the distributions of each SCD. During normalization
of the SCD matrix, all counts in each matrix’s row are divided by a divisor. To
approximate this divisor with M3, we assume that in each row at least one value
had the count one, i.e., there was a word that occurred only once in the referenced
sentences of the SCD. This word will have the minimal value in the distribution and

60

6.3. Evaluation

Algorithm 8 FrESH Method 3 (M3)

1: function FrESH-M3(δ∥·∥(D), p)
2: Input: Normalized SCD matrix δ∥·∥(D); Set of faulty sent. with SCDs p

3: Output: Updated normalized SCD matrix δ∥·∥(D)
4: for each (s, t) ∈ p do ▷ Iterate over faulty sentences with SCDs
5: m = minj=1,...,L; δ∥·∥(D)[t][j]>0 δ∥·∥(D)[t][j] ▷ Minimal value in SCD’s row
6: for each word wi ∈ s do ▷ Iterate over words
7: δ∥·∥(D)[t][wi] −= I(wi, s) ·m
8: return NormalizeRows(δ∥·∥(D))

we assume it had a count of one. So the normalized value is equal to one divided
by the divisor, which in turn is a factor that we can use to decrease the values that
are subtracted from the matrix by the same amount as during the normalization.

Again, M3 is based on an approximation and may not produce identical matrices
compared to those generated with learning from scratch.

6.2.4. Method 4

The input consists of an SCD matrix containing row-wise distributions of words
and a set of faulty sentences. For this input, the ideas from M2 and M3 can be
combined. First, the SCD for each faulty sentences needs to be determined, which
can be done via MPS2CD. Second, the minimal value of this SCD’s distribution can
be determined and used as factor while changing the SCD matrix.

We will not consider M4 in detail, as it is only a combination of M2 and M3. In
most use-cases there is no benefit in normalizing the SCD matrix, because mostly
the cosine similarity is used and it does a normalization by definition. Therefore,
especially M2 is beneficial for our agent using SCDs and getting feedback from its
users, e.g., to remove faulty sentences.

Next, we present an evaluation of M1, M2, and M3.

6.3. Evaluation

After we have introduced FrESH to remove sentences from an SCD matrix, we
present an evaluation of the methods M1, M2, and M3. First, we describe the
used corpus and evaluation workflow. Afterwards, we present the results of the
evaluation.

61

6. FrESH – Feedback-reliant Enhancement of SCDs by Humans

6.3.1. Dataset

In this evaluation we use the 20 newsgroups1 dataset. 20 newsgroups is a well-
known corpus consisting of e-mails from 20 e-mail newsgroups. Thematically, the
20 newsgroups can be divided into six topics, computer, sport, science, politics,
religion and for sale. The entire corpus consists of 18 828 text documents. The
documents have between 1 and 39 682 words with a median of 160 words.

6.3.2. Workflow and Metrics

FrESH is implemented in Python and runs in a Docker container on a machine
featuring 8 Intel 6248 cores at 2.50GHz (up to 3.90GHz) and 16GB RAM.

To evaluate each method, we first create the full corpus Df containing all documents
from 20 newsgroups. Each sentence gets annotated by OpenIE [AJPM15] and the
extracted spo-triples are used as data for the SCDs. Then, we split Df into two
subsets, Ds contains the sentences to subtract—considered faulty—and Dk contains
the non-faulty sentences to keep. For each corpus we learn an SCD matrix using
SEM, i.e., δ(Df) and δ(Dk). Afterwards, we apply one of the three methods to δ(Df)
and remove the sentences in Ds. This step yields δ′(Df), which should be identical
to δ(Dk).

As a metric, we then calculate the difference of the matrices δ′(Df) and δ(Dk)
for each SCD t using the Hellinger distance [Hel09]. For calculating the Hellinger
distance, the matrices are normalized row-wise to become a distribution.

HDt (δ′(Df), δ(Dk)) =
1√
2

√
√
√
√

L∑

i=1

(√

δ′(Df)[t][i]−
√

δ(Dk)[t][i]
)2

6.3.3. Results

In this section, we present the results of the evaluation. In Figure 6.3, the duration
of removing one sentence with the three different methods is shown. M1 is very fast,
while M2 and M3 need more time. M2 needs to determine the SCD via MPS2CD
which takes time and M3 needs to calculate the factor needed to maintain the
distribution in the matrix. However, all methods are reasonably fast, as it takes
at most 4.5ms to remove a sentence which will be clearly faster than retraining the
matrix from scratch.

1http://qwone.com/~jason/20Newsgroups/

62

http://qwone.com/~jason/20Newsgroups/

6.3. Evaluation

40

60

80

100

0 20 40 60

Percentage of Faulty SentencesR
ed

u
ct

io
n

 o
f

H
el

li
n

g
er

 D
is

ta
n

ce

Method M1 M2 M3

Figure 6.2.: Reduction of difference between the matrices δ′(Df) and δ(Dk) for
the three methods and different numbers of faulty sentences.

0

1

2

3

4

Method

R
u
n
ti

m
e
 (

m
s)

M1 M2 M3

Figure 6.3.: Average runtime removing
one sentence with the different methods.

In Figure 6.2, the difference between
the matrices δ′(Df) and δ(Dk) is shown.
The difference is shown as percentage
of the reduction of the Hellinger dis-
tance averaged for all SCDs: First, the
Hellinger distance between δ(Df) (full
corpus) and δ(Dk) (non-faulty part) is
calculated. When removing the faulty
sentences from δ(Df) to get δ′(Df) the
distance should become smaller, which
is shown as reduction. A reduction of
100% implies that δ(Dk) equals δ′(Df).
The reductions are shown for all three
methods and different numbers of faulty
sentences in Ds. The x-axis represents
the size of Ds as percentage of the entire
corpus Df .

M1 inverts the operations of SEM, there-
fore, after removing all faulty sentences, both SCD matrices are equal and the dif-
ference is reduced completely. M2 reaches very high reductions around 95% and
thus provides a reliable technique to remove faulty sentences. The results of M3 are
found to be significantly below M1 and M2. Especially, if only few faulty sentences
are deleted, the difference keeps to be high. This high difference implies that our
assumption made in M3, to approximate the factor used to normalize the matrix,

63

6. FrESH – Feedback-reliant Enhancement of SCDs by Humans

does not hold.

Therefore an agent maintaining an SCD matrix should store it using counts instead
of distributions. Doing so, the agent may use M1 and M2 to incorporate feedback. In
particular, storing counts is advantageous because FrESH is more accurate, counts
can be stored as integers instead of possibly inaccurate floats, and for most use-cases
of the SCD matrix, normalization is done by definition, e.g., as part of the cosine
similarity.

Summarizing, an IR agent using SCDs can automatically train an SCD matrix
storing counts using USEM on a corpus. This SCD matrix is automatically trained
and may contain some faulty sentences and SCDs. When a user uses the IR agent, a
button to remove faulty sentences is available, which then triggers FrESH to remove
a sentence. Depending on the specific situation, the SCD of a sentence to be removed
may or may not be known, and M1 or M2 may be used. Thus, the SCD matrix is
updated incrementally and optimized for the user. A limitation of FrESH is that it
removes a sentence completely from the SCD matrix, whereas sometimes it would
be better to change only the SCD associated with the sentence.

6.4. Interim Conclusion

FrESH solves only one part of the Problem II (Subsection 3.2.3) we came across
building the SCD-based IR agent. Humans indicate faulty sentences, which then can
be removed from the matrix without retraining the matrix using FrESH. However,
FrESH removes a faulty sentence entirely from the SCD matrix and corpus. Thus,
FrESH allows human users of the SCD-based IR agent to remove faulty content, i.e.,
Fake-News and copyright or privacy protected content.

However, dependencies and relations to other SCDs and other sentences are not
maintained when a sentences is removed. Additionally, often the content of a sen-
tence is correct, but the association between sentence and SCD is erroneous. The
next chapter focuses on maintaining these dependencies without removing a sentence
from the corpus.

64

7. ReFrESH: Relation-preserving
Feedback-reliant Enhancement of SCDs

The sections of this chapter are largely taken verbatim from:

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: ReFrESH –
Relation-preserving Feedback-reliant Enhancement of Subjective
Content Descriptions in 18th IEEE International Conference on Seman-
tic Computing (ICSC 2024) – Best Paper Award
https://dx.doi.org/10.1109/ICSC59802.2024.00010

Magnus Bender developed the initial idea, conducted the experiments, and wrote the
manuscript of the publication. The other three authors fundamentally supervised
the research by discussing ideas, proofreading the manuscript multiple times, and
giving feedback.

7.1. Introduction

FrESH removes faulty sentences and their SCDs entirely from a corpus. However,
removing the entire sentence does not solve the problem this chapter addresses: A
faulty association between an SCD and a sentence needs to be updated based on feed-
back from a user, but the sentence needs to remain in the corpus. Thus, this chapter
provides ReFrESH, the solution to the second part of Problem II (Subsection 3.2.3).
ReFrESH is an approach for Relation-preserving Feedback-reliant Enhancement of
SCDs by Humans. Both, ReFrESH and FrESH incrementally change SCD-based
models based on feedback.

Notably, correcting faulty associations between sentences and SCDs is required more
frequently than removing sentences: A human or an automated annotation tech-
nique, e.g., OpenIE [AJPM15] or USEM, may create SCDs for a specific corpus. In
general, when reading a text document, each human gets its own perceptions and
views of the text document. For example, think again about studying for an exam.
You take the script and start to annotate things you consider crucial with your
understanding. Consequently, the SCDs added to a corpus by a human are slightly
different and subjective depending on the particular human. Similarly, SCDs esti-
mated with automated annotation techniques depend on the particular technique.

65

https://dx.doi.org/10.1109/ICSC59802.2024.00010

7. ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs

We assume that we have a corpus associated with SCDs to start with. Together, the
text documents and the associated SCDs build a model of the corpus. An SCD-based
IR agent answers queries of users which may be humans or other agents. A query
is some unseen text to which the user is interested in finding similar and relevant
documents from the agent’s corpus. To answer a query, the IR agent uses the SCDs
associated with the corpus and returns documents that are assumed to be similar
because they share the same SCDs as the query. A user may respond with feedback
on the IR agent’s answer, i.e., may report a faulty or not similar document.

The IR agent heavily relies on SCDs. However, in most cases, a user of the agent
will not create the initial SCDs of the corpus itself. At this point, there may be a
difference between the SCDs used by the agent and the SCDs envisioned by the user.
In other words, the SCDs used for IR do not necessarily represent the perceptions
of the agent’s user. One possibility to avoid the difference is to force each user to
create the initial SCDs of the corpus itself. However, having each user annotate
the whole corpus with its understanding is not practical. Therefore, we update the
model in case the user determines a mismatch. Then, the IR agents can change the
SCDs using ReFrESH according to the feedback about the mismatch.

ReFrESH assigns the sentence with the faulty association to a different and hope-
fully better fitting SCD. The other sentences of the SCD are also considered and
may be assigned to a different, a new, or the same SCD. Considering all sentences is
necessary, as the creation of SCDs consists of multiple steps whereas each step influ-
ences the next steps. However, influences between steps cannot be reproduced ret-
rospectively and thus can not easily be considered by ReFrESH. The term relation-
preserving emphasizes that relations among SCDs and other sentences associated
with SCDs are considered by ReFrESH. A relation, e.g., homonym, between two
SCDs, one about a river bank and one about a financial institution, is preserved.

The remainder of this chapter is structured as follows: First, we look at related work.
Afterwards, we formalize the problem of updating a single SCD while preserving
relations to other SCDs and sentences and present the solution ReFrESH. Finally,
we present an evaluation of ReFrESH and conclude afterwards.

7.2. Related Work

Before we present ReFrESH, we take a look at related work. Incrementally updating
or changing already available models has been investigated in different ways, but
not with SCDs (besides of FrESH).

One well-known approach is to pre-train a more general model first and fine-tune it
later for a specific task. During fine-tuning the model is trained on task-specific

66

7.3. Relation-preserving Updates on SCD Matrices

data. A typical example are models that use the transformer architecture like
BERT [DCLT19] or GPT [BMR+20].

Another possibility is to bring the task-specific data in during the computation of
the answer. In this case, the model is not updated, but to each query some user-
and case-specific data is added before the query is processed by the model [LPP+20].
Most chatbots like ChatGPT1 or Gemini2 use this technique.

Both of these techniques incrementally update a model, like ReFrESH, and work,
unlike ReFrESH, with models based on deep learning. Techniques that update a
model must be distinguished from techniques that completely remove an item from
the model, such as FrESH. There are approaches to remove an item from a model,
e.g., for K-Means [Llo82, GGVZ19] or linear and logistic regression [ISCZ21]. The
common idea is to avoid retraining the model and instead only incrementally change
the model by applying an inverse operation that removes a single item of the training
data from the model.

In this chapter, we focus on incrementally updating faulty associations between
SCDs and sentences, while leaving the corpus unchanged and preserving all sen-
tences.

7.3. Relation-preserving Updates on SCD Matrices

This section introduces ReFrESH, the algorithm that allows for updating an SCD-
based model by correcting faulty associations between sentences and SCDs. First,
we look at possible relations among SCDs and describe ReFrESH afterwards.

7.3.1. Relations to Preserve

Before we can compose a relation-preserving algorithm, we need to specify the dif-
ferent relations among SCDs. An SCD ti consists of referenced sentences {s1, ..., sS},
a word distribution (vi,1, ..., vi,L), and additional data Ci, these are the intra-SCD
relations. One of the referenced sentences sr has been marked as faulty and should
be removed. However, the remaining S − 1 sentences Sc = {s1, ..., sS} \ {sr} are
then considered as correct. The word distribution will be different after a sentence
is removed from an SCD, but can be easily recalculated afterwards. All items of
the additional data Ci are related, i.e., each item can be understood as related to its
SCD and thus as a relation of the SCD to be preserved.

1https://chat.openai.com/
2https://gemini.google.com/, formerly Bard

67

https://chat.openai.com/
https://gemini.google.com/

7. ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs

The seat of an association
is the place where the ad-
ministration is conducted.SCD

Word Distribution Additional Data

Computed Label

Relations to SCDs

Referenced Sentences

The seat of an association is the place
where the administration is conducted.

A minor child shares the parents'
residence.

The seat of a foundation is the place
where the administration is conducted.

✗

1

The seat of a foundation is
the place where the ad-

ministration is conducted.
1

A minor child shares the
parents' residence.

Disassemble

Figure 7.1.: Left: An SCD with its referenced sentences, three in this example,
its row of the word distribution, and its additional data, e.g., containing a label
and two relations to other SCDs. The red cross marks the sentence to remove
from the SCD. Right: The SCD after the disassemble step. Each of the three
sentences now stand by itself, while the label and the two relations have been
reassigned to the individual sentences and given a factor.

Summarized, ReFrESH needs to preserve the relations of the referenced sentences
sr and Sc to the items in Ci. In the following, Ci contains a label li, e.g, computed
by LESS, and a set of relations to other SCDs Ri, i.e., inter-SCD relations. Each
tuple in Ri models a relation of SCDs, e.g., (ti, tj) a relation between ti and tj.

In general, a sentence may have relations which directly belong to the sentence
itself and not to its SCD. As ReFrESH only modifies SCDs, relations belonging to a
sentence are not effected by ReFrESH. ReFrESH uses this by shifting relations from
the SCD to the sentences. After a relation is shifted to the sentences, ReFrESH does
not have to distinguish between intra- and inter-SCD relations.

On the left hand side of Figure 7.1, an SCD with the previously described parts is
depicted. In this example, the SCD references three sentences. The sentence with
the faulty association is already marked by a red cross. The additional data contains
a label and two relations of ti to other SCDs, i.e., tj and tl.

7.3.2. Four Steps for Updating an SCD

ReFrESH needs to preserve the relations between the referenced sentences and the
items in the additional data of an SCD. After applying ReFrESH, the sentence sr

and the sentences Sc are associated with different SCDs.

68

7.3. Relation-preserving Updates on SCD Matrices

We assume that there is a corpus D with an SCD matrix δ(D) and the set of SCDs
g(D). Together, these three parts build an SCD-based model which is updated by
ReFrESH. To do so, ReFrESH needs four steps:

1) Shift Relations to Sentences

The input of ReFrESH is a sentence sr which is falsely associated with an SCD
ti. ReFrESH’s task is to remove sr from ti and to reassign sr to a better fitting
SCD. Besides preserving the relations, ReFrESH also needs to consider the impact
of sr on the SCD ti. When sr is associated with ti, the word distribution of ti also
represents sr. Thus, similar sentences to sr might also be added to ti, just because
sr is associated with ti. This is based on the assumption that sentences are added
to an SCD one after another and using the word distribution to measure similarity.
For example, USEM chooses best matching sentences in a greedy way one after
one. Also, humans may build their own set of SCDs manually and incrementally
(including the use of ReFrESH multiple times in a row). Thus, when sr is removed,
other sentences added because of sr may also need to be removed from the SCD.

A comparable scenario arises when clustering data points using a density based
clustering algorithm: If a point at a border of a cluster is sufficiently close to another
cluster, both clusters may get merged. In this case, the point at the border becomes
some type of bridge between both clusters and without this point both clusters
would not have been merged. Hence, if this border point is removed later, both
clusters should be separated, too.

To take such influences into account, ReFrESH needs to consider all referenced sen-
tences {s1, ..., sS} of ti. To be able to consider every sentence individually, ReFrESH
first shifts all the relations to preserve, the ones in Ci, directly to the individual sen-
tences. A sentence to be removed might not share the topic of an SCD, thus,
ReFrESH does not shift the label to sr. However, the other sentences Sc, which are
considered correct, will share the topic of the SCD. Thus, the sentences in Sc are
assigned with the label li and the factor 1 for this relation between sentence and
label.

Next, ReFrESH does the shift for all the relations in Ri and again differentiates
between sentences sr and Sc. The relations in Ri are added to Sc with the factor fc

for correct sentences. Thereby, fc is defined as fc = S−1
S

where S is the number of
referenced sentences of ti. In contrast, the relations in Ri are added to sr with the
factor fr for removed sentences. Here, the factor is fr = 1

S
. If some relation already

has a factor, both factors are multiplied because the factors express uncertainty.

The relations from Ci are shifted to the sentences to make sure all relations are
preserved. The factors make sure that relations are preserved differently for Sc and

69

7. ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs

sr, i.e., if a sentence is considered correct, the relations of the SCD are also more
likely to be correct than if the sentence is falsely associated. Of course, it might be
necessary to change the factor for specific relations and use-cases. All sentences and
relations are stored in P for later use.

2) Disassemble SCD

Coming back to the problem that we do not know why a sentence was added to
an SCD. ReFrESH cannot determine which sentences have been added because of
sr, too. The only solution to this problem is to disassemble the entire SCD ti.
After step 1), all relations to preserve are directly tied to each referenced sentence.
Thus, the SCD ti is not needed anymore and can be disassembled without loosing
any important information. Afterwards, ReFrESH is able to consider each sentence
separately.

Disassembling an SCD means deleting the word distribution (vi,1, ..., vi,L), the i-th
row, from the SCD matrix and removing ti from g(D). Additionally, the SCDs
in relation with ti are updated that they are now in relation with the referenced
sentences of ti.

On the right hand side of Figure 7.1, an example of an disassembled SCD ti is shown.
The lowest sentence is sr, in this case the factors are fr = 1

3
and fc = 2

3
. The label

gets a factor of 1 for the upper two sentences Sc and sr has no label. The SCD ti is
temporarily removed completely.

3) Reassign Sentences to SCDs

Now, the previously referenced sentences stored in P need to be reassigned, i.e., each
sentence needs to be associated with a new SCD. In this third step, ReFrESH needs
to find the best SCD for each sentence. This best SCD may be an already known
SCD of the corpus or newly composed SCDs while ReFrESH needs to assure that sr

does not get associated with a new SCD. A new SCD references only sentences from
Sc. If sr gets associated with such new SCD, the association of sr and the new SCD
might be very similar or even equal to the initial SCD ti before running ReFrESH
to remove sr.

Analogously, in the example about the clustering of data points, all points of both
clusters and the border point would be considered again. Each point may be added
to another cluster or one or more new clusters may be created, while the border
point will become an outlier or member of another cluster.

70

Algorithm 9 Relation-preserving Feedback-reliant Enhancement of SCDs

1: function ReFrESH((D, δ(D), g(D)), sr, ti)
2: Input: SCD-based model (D, δ(D), g(D));
3: sentence to remove sr; associated SCD ti

4: Output: Updated model (D, δ(D), g(D))
▷ Step 1) Shift Relations to Sentences

5: P ← ∅ ▷ Sentences with relations to preserve
6: for each referenced sentence si ∈ {s1, ..., sS} do
7: if si = sr then ▷ Calculate factor
8: f ← 1

S
, pi ← ∅

9: else ▷ Preserve label for sentences in Sc

10: f ← S−1
S

, pi ← {(1, li)}
11: for each relation to preserve ri ∈ Ri do
12: pi ← pi ∪ {(f, ri)} ▷ Store with factor

13: P ← P ∪ {(si, pi)} ▷ Store sentence and relation

▷ Step 2) Disassemble SCD
14: g(D)← g(D) \ ti

15: δ(D)[i]← Nil ▷ Delete i-th row
▷ Step 3) Reassign Sentences to SCDs

16: N ← ∅ ▷ Note changed SCDs
▷ First reassign sr

17: j ← mostSimilarRow(s⃗r, δ(D))
18: δ(D)[j]← δ(D)[j] + s⃗r ▷ Update matrix
19: tj ← (Cj, {s1, ..., sS} ∪ {sr}) ▷ Add sr to tj

20: N ← N ∪ {(tj, sr, pr)} ▷ Note that tj changed
▷ Reassign remaining sentences Sc

21: for each sentence and rel. (si, pi) ∈ P \ (sr, pr) do
22: j ← mostSimilar(s⃗i, δ(D))

23: k ← mostSimilar(s⃗i, P⃗ \ s⃗i)
24: if similarity(j) > similarity(k) then
25: δ(D)[j]← δ(D)[j] + s⃗i ▷ Update matrix
26: tj ← (Cj, {s1, ..., sS} ∪ {si}) ▷ Add si to tj

27: N ← N ∪ {(tj, si, pi)}
28: else ▷ Build new SCD tk with si and sk

29: δ(D)[k]← s⃗i + s⃗k ▷ Add row to matrix
30: g(D)← g(D) ∪ (Ck, {si, sk}) ▷ Create SCD
31: P ← P \ (sk, pk) ▷ sk already reassigned
32: N ← N ∪ {(tk, si, pi), (tk, sk, pk)}

▷ Step 4) Propagate new Relations
33: for each SCD, sentence, and rel. (ti, si, pi) ∈ N do
34: if Ci = ∅ then ▷ New SCD
35: Ci ← pi

36: li = LESS(ti)
37: else
38: for each factor and relation (fi, ri) ∈ pi do

39: Ci ← Ci ∪
{(

x
S−x
· fi, ri

)}

40: return (D, δ(D), g(D))

7. ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs

We still need an algorithm to reassign sentences to SCDs, which is similar to estimat-
ing SCDs in an unsupervised way. Thus, ReFrESH applies the idea of USEM and
uses USEM’s greedy method to reassign the sentences with new or known SCDs.

The idea of USEM is to start by considering each sentence as an SCD with one
referenced sentence. Afterwards, USEM uses its greedy method and identifies the
two most similar SCDs to merge. Hence, in the first iteration of USEM two SCDs
with one referenced sentence each get merged and become one SCD with two ref-
erenced sentences. To identify similar SCDs, the cosine similarity is used with the
SCD matrix’ rows.

For ReFrESH, the idea is applied as follows: First, the word vector for sr is calculated
(as in Lines 8 and 9 of Algorithm 1) and sr is added to most similar and already
known SCD of the corpus (Lines 17 and 18 in Algorithm 9). For each sentence in
Sc its word vector is then compared to all rows in the SCD matrix and to the word
vectors of the other sentences (Lines 22 and 23 in Algorithm 9). If a word vector is
most similar to one of the rows in the SCD matrix, and thus to an already known
SCD of the corpus, the sentence is added to the SCD as referenced sentence (Lines
25 - 27 in Algorithm 9). In the other case, if a word vector is most similar to a word
vector of another sentence, both sentences are merged to form a new SCD, which is
then added to g(D) and δ(D) (Lines 29 - 32 in Algorithm 9). This is repeated until
all sentences of Sc are part of an SCD. In the end of step 3), ReFrESH recalculates
the word distribution of all SCDs to which new referenced sentences have been
added. The new and modified SCDs are stored in N .

4) Propagate new Relations

Finally, the SCD-based model contains all sentences again and all SCDs in the model
have their word distribution and set of referenced sentences. However, (i) there is no
additional data of all new SCDs and (ii) the SCDs that have received one or more
new referenced sentences do not have the relations of their new sentences. Algorithm
9 iterates through all modified SCDs in N including the sentences and relations and
addresses both cases.

In the case of (i), the new SCD does not have any relations itself. Furthermore, the
relations of the referenced sentences of this SCD are all the same, as all sentences
originate from the same disassembled SCD. Thus, the relations can be shifted back
from the sentences to the SCD including the factors. The factors outline some un-
certainties, as relations may not originally originate from the SCD and its sentences.
Finally, a new label for the SCD is generated by LESS (Chapter 5).

Otherwise, case (ii), we assume that x new sentences have been added to an SCD
with previously S sentences. In contrast to (i), the relations stay with the sentences

72

7.4. Evaluation

and are also propagated to the SCD. The relations from the sentences are added
to the SCD’s additional data and each factor is multiplied by x

S+x
. By using this

factor, each relation is weighted depending the ratio it has among the referenced
sentences of the SCD. The label of the SCD will not be changed, but labels from the
sentences are added like a relation including the factor. The factors used with the
relations by ReFrESH are slightly inspired by weighted model counting [SBK05].

Finally, the original association of sr with ti has been removed and all former ref-
erenced sentences of ti have been reassigned to a new and better fitting SCD. All
relations have been preserved and propagated to other SCDs, too.

7.3.3. Algorithm ReFrESH

Based on the previous subsection presenting the four steps of ReFrESH, it is entirely
formulated in Algorithm 9. ReFrESH follows the four steps and returns the updated
SCD-based model as triple (D, δ(D), g(D)). The input contains the sentence to
remove sr and its SCD ti. SCD ti might be omitted. Then all SCDs in g(D) must
be searched for the SCD associated with sr.

We have now proposed the algorithm of ReFrESH with four steps. Next, we describe
the evaluation and discuss the results.

7.4. Evaluation

After we have introduced ReFrESH, we present an evaluation. First, we introduce
the corpus. Afterwards, we describe the workflow of the evaluation and the used
metrics. Finally, we present the results and discuss the performance of ReFrESH.

7.4.1. Dataset

In this evaluation we again use the Bürgerliches Gesetzbuch (BGB)3, the Civil Code
of Germany, in German language as corpus. The BGB is freely available, can be
downloaded as XML file, and it is easily parsable and processable. As the corpus
is a law text it consists of correct language, i.e., punctuation and spelling follow
the orthographic rules. Thus, less preprocessing and no data cleaning is needed.
Furthermore, the words used in text documents have a clear meaning and mostly
the same words are used instead of using synonyms.

3https://www.gesetze-im-internet.de/bgb/, English translation https://www.

gesetze-im-internet.de/englisch_bgb/

73

https://www.gesetze-im-internet.de/bgb/
https://www.gesetze-im-internet.de/englisch_bgb/
https://www.gesetze-im-internet.de/englisch_bgb/

7. ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs

We use the first part of the BGB, the so called “General Part”: The entire corpus
consists of 228 law paragraphs and overall 854 sentences which are used as SCD
windows. Each law paragraph contains between 1 and 40 sentences with an average
of 3.78 sentences. The vocabulary consists of 1 436 words, where each sentence is
between 1 and 20 words long with an average of 7.11 words.

7.4.2. Workflow and Implementation

ReFrESH is implemented using Python and runs inside a Docker container. The
implementation uses the libraries Gensim4, NumPy5, and NLTK6. The evaluation
is performed on a machine featuring 8 Intel 6248 cores at 2.50GHz (up to 3.90GHz)
and 16GB RAM. We run the following workflow to evaluate ReFrESH:

(i) Randomly choose a set of pairs of sentences which do not share a similar
concept, the set contains around one eighth of all the sentences of the corpus.
Each pair of sentences is associated with the same SCD and then acts as faulty
associations of SCD and sentences.

(ii) Estimate an SCD-based model which contains the faulty associations chosen
in (i): Use USEM with the greedy method and estimate the faulty SCD matrix
δf (D). We add a step to USEM after the initial SCD matrix is created. This
step groups each pair of sentences from (i) into the same SCD, which leads to
faulty associations in the model. Afterwards, USEM continues normally, i.e.,
finds similar sentences and groups them into SCDs.

(iii) Run ReFrESH to update δf (D) and remove all the faulty associations initiated
by the pairs of sentences from (i). Meanwhile, keep a copy of δf (D) and create
the new refreshed SCD matrix δr(D), where all the faulty associations have
been removed.

(iv) Create a baseline model which represents the correct model for the corpus D.
Estimate the baseline SCD matrix δb(D) using USEM without the additional
step.

(v) Compare the differences between the three models, i.e., the matrices δf (D),
δr(D), and δb(D).

This workflow focuses on evaluating step two (disassemble) and step three (reassign).
The reassignment of sentences to new and better SCDs is the crucial and approxi-
mative part of ReFrESH. It is important to maintain the relations of the SCDs and

4https://radimrehurek.com/gensim/
5https://numpy.org/
6https://www.nltk.org/

74

https://radimrehurek.com/gensim/
https://numpy.org/
https://www.nltk.org/

7.4. Evaluation

sentences (steps one and four), but their treatment is fixed by the algorithm and
not approximate. Hence, steps one and four do not need to be evaluated.

7.4.3. Metrics

Based on the three matrices δf (D), δr(D), and δb(D) we need to evaluate the per-
formance of ReFrESH. The main idea is that the distributions of our baseline δb(D)
and the refreshed δr(D) should be identical. For δr(D) first some faulty associa-
tions have been added and removed afterwards by ReFrESH, while δb(D) is trained
straightforward. Thus, we need to measure the difference between matrices of dis-
tributions.

Using the Hellinger distance [Hel09], the distance between two matrices P and Q

can be calculated row-wise by:

hi(P, Q) =
1√
2

√
√
√
√
√

L∑

j=1

(√

P [i][j]−
√

Q[i][j]
)2

The resulting distance vector H(P, Q) contains in each row hi(P, Q) the distances
between the matrix’ rows. Based on this distance vector, we calculate two metrics:

First, the proportion of differences, which is the proportion of rows in H which
are not equal to zero. It shows how many SCDs are different between two SCD
matrices. Since ReFrESH updates the SCD matrix, we assume that there are many
equal, i.e. unchanged, rows. Second, the average Hellinger distance considers only
the non equal rows in H and represents the average difference in H. It shows how
similar the SCDs of two SCD matrices are.

A technical note: The distances cannot be calculated between two SCD matrices
directly, because the row numbers of an SCD matrix might change between multiple
runs of USEM or ReFrESH. Thus, we first create intermediate matrices which use
a globally equal window number and calculate the distances on these intermediate
matrices. Using this window numbers, we compare the distributions for the same
sentence between different matrices.

7.4.4. Results

In this section, we present the results gained using ReFrESH and the previously de-
scribed workflow. In the upper graph of Figure 7.2, the average Hellinger distance
is shown for different numbers of SCDs. Each number of SCDs represents one run
of the workflow and thus three matrices faulty, baseline, and refreshed. Using the

75

7. ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs

0.40

0.45

0.50

600650700750800850

Number of SCDs

A
v
er

ag
e

H
el

li
n

g
er

 D
is

ta
n

ce

0.15

0.20

0.25

0.30

600650700750800850

Number of SCDs

P
ro

p
o

rt
io

n
 o

f
D

if
fe

re
n

ce
s

Distance Vector H(Faulty, Baseline) H(Faulty, ReFrESH) H(ReFrESH, Baseline)

Figure 7.2.: Proportion of different rows and average Hellinger distance value
for multiple hyperparameters of USEM resulting in different numbers of SCDs.
For each number of SCDs, three distances, each for one of the distance vectors
between the three generated matrices, are shown.

three matrices we calculate three Hellinger distance vectors H(Faulty, Baseline),
H(Faulty, ReFrESH), and H(ReFrESH, Baseline) and for each vector both met-
rics.

The performance of ReFrESH is especially shown by the dashed blue line of H(ReFr-
ESH, Baseline). A perfect deletion of faulty associations from the SCD matrix
would result in a distance of zero. In this case, the distance is greater than zero, but
well below the other two lines. The solid purple line shows H(Faulty, Baseline),
which can be interpreted as the error an SCD-based model would have without
ReFrESH, because a faulty matrix with all the faulty associations is compared to
the baseline. Since the dashed blue line is below the solid purple line, ReFrESH
reduces the error of the model by removing faulty associations.

76

7.5. Interim Conclusion

In the lower graph of Figure 7.2, the proportions of different rows are shown—again
for different numbers of SCDs and based on three Hellinger distance vectors. The two
dashed lines represent a distance to ReFrESH and are above the solid purple line of
H(Faulty, Baseline). A smaller amount of different rows in H(Faulty, Baseline)
may be explained by the fact that both models use USEM. In contrast, ReFrESH
is a different technique and reassigns sentences to other SCDs which in total affects
more SCDs.

0.00

0.05

0.10

0.15

600650700750800850

Number of SCDs

R
ed

u
ct

io
n
 o

f
H

el
li

n
g
er

 D
is

ta
n
ce

Figure 7.3.: Reduction of the Hellinger dis-
tance when running ReFrESH on the faulty
model and comparing to the baseline, i.e., the
amount of correction done by ReFrESH.

In Figure 7.3, the reduction of the
Hellinger distance by running Re-
FrESH is shown. It shows the aver-
age difference of H(Faulty, Baseline)
and H(ReFrESH, Baseline), in other
words, the space between the dashed
blue and solid purple line in the upper
part of Figure 7.2. Hence, the value can
be seen as an improvement of the model
when using ReFrESH.

At first glance, the improvement might
be a bit small. However, ReFrESH leads
to matrices with more different rows but
with smaller distances of each row. In
comparison, the baseline and the faulty
model share some identical rows, with
each distance value being significantly
larger. ReFrESH does the reassignment
of the sentences to SCDs with the goal
of finding a better matching SCD. To
do so, ReFrESH needs to change many
SCDs with the goal of getting a slightly changed but better model. Summarized,
ReFrESH provides a good performance for refreshing an SCD-based model based
on, e.g., human, feedback.

7.5. Interim Conclusion

This chapter introduces ReFrESH, an approach consisting of four steps for incorpo-
rating feedback in SCD-based models. In general, when reading a text document,
each human gets its own perceptions and views of the text document. Hence, SCDs
are slightly different, i.e., subjective, depending on the human or automated anno-
tation technique used to create them. If SCDs are used by an IR agent, a user may

77

7. ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs

consider some answers of the agent faulty and respond with feedback to the agent.
In this case, the agent can use ReFrESH to update its SCDs. It allows incremental
updates of SCD-based models based on user feedback and avoids the need for each
user to create their own SCDs for each corpus from scratch.

In the first step, ReFrESH shifts all relations among SCDs to the sentences to ensure
that relations between SCDs are preserved during the update. Second, the SCD to
be updated is disassembled before each sentence is reassigned to a better fitting
SCD in the third step. Finally, the preserved relations are propagated back from
the sentences to the SCDs.

Overall, the evaluation shows that ReFrESH works well and provides a powerful
technique to update SCD-based models based on human feedback. Using ReFrESH,
faulty associations between sentences and SCDs can be removed and the sentences
get associated with new and better fitting SCDs. The evaluation focuses on step
two (disassemble) and step thee (reassign) because the crucial and approximative
part of ReFrESH is the reassignment of an SCD.

Closing the Cycle For the goal of this dissertation and for creating an SCD-based
IR agent, ReFrESH is an elementary piece of the puzzle. Combining all the previ-
ous chapters of this dissertation, we can close the cycle of estimation, enrichment,
usage, and improvement approaching text understanding. USEM and LESS provide
the initial set of SCDs and the SCD matrix. If there are already some SCDs, SEM
may be used together with some of the strategies requiring less supervision by Kuhr
et al. [KWM19, KBBM21, BBG+21b, BBG+21a]. Afterwards, the MPS2CD algo-
rithm is used for IR and the corpus can be maintained and extended with relevant
documents [KBBM20]. Finally, the cycle gets closed by FrESH and ReFrESH: Both
techniques update the SCDs by feedback and thus improve the SCDs which are then
again used by the IR agent.

However, our Problem IV (Subsection 3.2.5) remains: ReFrESH introduces factor-
weighted relations between SCDs and the sentences of a corpus. Thus, the next
chapter introduces relations among SCDs using complementarity as an example.
Looking back at Subsection 5.2.1, these relations between SCDs are considered as
inter-SCD relations.

78

8. Complementarity as an Inter-SCD
Relation

This chapter is based on the following two publications:

• Magnus Bender, Felix Kuhr, Tanya Braun: To Extend or not to Extend?
Enriching a Corpus with Complementary and Related Documents in
International Journal of Semantic Computing, 2022
https://dx.doi.org/10.1142/S1793351X2240013X

• Magnus Bender, Felix Kuhr, Tanya Braun: To Extend or not to Extend?
Complementary Documents in 16th IEEE International Conference on Se-
mantic Computing (ICSC 2022)
https://dx.doi.org/10.1109/ICSC52841.2022.00011

For the conference paper: All three authors developed the idea. Magnus Bender
and Felix Kuhr wrote the manuscript. Magnus Bender conducted the experiments.
Tanya Braun fundamentally supervised the research.

For the journal article: The journal article itself is an extended version of the con-
ference paper with additional major changes to the structure and use-case. Mag-
nus Bender developed the initial idea, conducted the experiments, and wrote the
manuscript. Tanya Braun fundamentally supervised the research by discussing ideas,
proofreading and lecturing the manuscript, and giving feedback. The actual sections
of this chapter are largely taken verbatim from the journal article.

8.1. Introduction

In this chapter, we consider inter-SCD relations, i.e., relations between two SCDs.
We use the example of complementarity as relation and introduce techniques for
working with complementary SCDs, which can be generalized for other types of
inter-SCD relations.

Still, we follow the idea of building an SCD-based IR agent. On one hand, relations
can be added by the users of the IR agent. Relations are then used to generate
responses. On the other hand, the IR agent needs to maintain its corpus, i.e.,
searches for new documents to extend its corpus, e.g., to add new information and

79

https://dx.doi.org/10.1142/S1793351X2240013X
https://dx.doi.org/10.1109/ICSC52841.2022.00011

8. Complementarity as an Inter-SCD Relation

provide a versatile collection of documents in the responses. We refer to this internal
task of an agent as corpus extension.

To decide a corpus extension, the agent has to to determine if a document is relevant
to a corpus. The first idea is that related documents are relevant. Relatedness can
be captured by some measure of similarity, defined using words directly or represen-
tations derived from them such as topic-word probability distributions, inferring ab-
stract topics represented as distributions over a vocabulary, or SCD-word probability
distributions. Kuhr et al. [KBBM19, KBBM20] have worked with four document
categories based on similarity using SCD-word probability distributions: (i) quasi
copies, a.k.a. similar documents, (ii) extensions, (iii) revisions, and (iv) unrelated
documents. Classifying documents on similarity may lead to looking at documents
that only contain more of the same, albeit possibly updated information. Hence,
the agent needs further techniques not using similarity to identify other relevant
documents.

To be able to leave the bubble of similarity, we need to define a different measure
of relatedness. Therefore, we focus on adding a fifth document category comple-
ment, which is hard to define given only words or numbers in distributions or vector
representations. Complements may use a completely different vocabulary, which
may render it as an unrelated document given similarity measures based on words.
In terms of vector representations, one may think of a complement as a document
having high values in certain dimensions where another one has low values. This
consideration may also apply to completely unrelated documents, though, making
it a not very effective measure. Therefore, we consider two problems, (i) formally
defining complementary documents and distinguishing complementary documents
from unrelated documents, and (ii) extending the document classification technique
by Kuhr et al. [KBBM19, KBBM20] with a fifth document category complement.

To get a handle on complementarity by way of a formal definition, we turn to SCDs,
specifically, SCDs in the form of relational tuples such as spo-triples together with
a taxonomy that specifies a concept hierarchy for the constants occurring in SCDs.
We hypothesize the following: Complementary documents have SCDs that contain
different constants of the same concept in a taxonomy. Given this hypothesis, we can
formally define complementary documents and specify a corresponding document
classification problem. Given a definition of complementarity, we can solve the first
problem of distinguishing unrelated and complementary documents by calculating a
complementarity value between two documents based on their SCDs and how they
interrelate given a taxonomy.

Facing the second problem of extending the document classification technique by
Kuhr et al. [KBBM19, KBBM20] with a category complement, we extend the SCD-
word probability distribution with complementary SCDs originating from comple-
mentary documents. Thus, the combined SCD-word probability distribution con-

80

8.2. Related Work

tains related and corresponding complementary SCDs. For a new document to
classify, the agent is then able to estimate most probable related and complemen-
tary SCDs using the combined SCD-word distribution. Altogether, the agent uses
the estimated SCDs to classify a document in one of the five categories.

Specifically, the contributions of this chapter are:

(i) a definition of the document classification problem for complements and a
definition of complementarity for SCDs in the form of relational tuples and a
definition of complementarity for documents based on complementary SCDs,

(ii) a first solution approach to the problem, which can be used for distinguishing
unrelated and complementary documents,

(iii) an altogether document classification technique for complementary and related
documents based on Kuhr et al., and

(iv) an evaluation of the performance of distinguishing unrelated and complemen-
tary documents as well as the overall document classification performance,
comparing this chapter’s approach against the method by Kuhr et al.

The remainder of this chapter is structured as follows: We start with related work
followed by a recap of SCDs and document categories. Then, we specify complemen-
tarity based on SCDs and present a solution approach to identify complementary
documents. Next, we present how to integrate complementary SCDs in the SCD
matrix and how to classify documents using this distribution. Finally, we present
an evaluation and end with an interim conclusion.

8.2. Related Work

To identify complementarity, we need to extract constants available in the taxon-
omy from sentences. Thus, we are interested in automatic (semantic) annotation
systems which might be useful. Generally, these annotation systems attach addi-
tional data to various concepts, e.g., people, organizations, or places, in a given text,
enriching the documents with machine-processable data. Some famous automatic
annotation systems are YEDDA [YZLL18], Slate [Kum19], MINTE [CGR+17], and
YAGO [SKW07]. For further annotation systems, please refer to [LZ19]. Some an-
notation systems like OpenCalais1 automatically attach data from a database, e.g.,
DBpedia [ABK+07], to extractable Named Entities (NEs) in the text. That is, the
extractable NEs are matched to items in a database and data from the database is
added to the documents next to the NEs.

1http://www.opencalais.com/, archived at https://web.archive.org/web/

20180902204730/http://www.opencalais.com/

81

http://www.opencalais.com/
https://web.archive.org/web/20180902204730/http://www.opencalais.com/
https://web.archive.org/web/20180902204730/http://www.opencalais.com/

8. Complementarity as an Inter-SCD Relation

In this chapter, we investigate a different but related problem, namely estimating the
complementarity of a new document with respect to the documents in a corpus of
an agent. The complementarity of a document is based on NEs extractable from the
text of the document and the NEs available in documents in the corpus. An agent
can decide to extend a corpus with a new document complementary to documents
in its corpus. In general, other automatic annotation systems ignore the context of
a user and add data to documents already available in the corpus of an agent.

Surveying methods of text mining, one can base a decision if a new document pro-
vides a value for an agent on different aspects, e.g., (i) similarity of text in the spirit
of tf.idf [SJ72], comparing a vector representation of a new document with vector
representations of the documents in the corpus, (ii) similarity of topics in the spirit
of LDA [BNJ03], comparing an estimated topic distribution of a new document with
topic distributions of documents in a given corpus, or (iii) entity matching [NKAJ59]
using NE recognition, comparing entities (and relations) retrieved from the new doc-
ument with entities (and relations) from SCDs in the corpus. We aim at providing
an approach to estimating the complementarity of a new document using a given
concept hierarchy and entities. The first two approaches have drawbacks regard-
ing identifying document categories including complementary documents: Both are
bag-of-words approaches, i.e., they ignore the order of words and extractable NEs,
while the order is required to identify extensions and revisions. Thus, we use ele-
ments from entity matching to link entities from a document to an external concept
hierarchy.

Another class of related work deals with Hidden Markov Model (HMM)-based classi-
fication. Classification and statistical learning using HMMs has achieved remarkable
progress in the past decades. Using an HMM is a well-investigated stochastic ap-
proach for modeling sequential data, and the generation process of HMMs has been
successfully applied in a variety of fields, such as speech recognition [RJ86], charac-
ter recognition [HBT96], finance data prediction [Zha04, NN15], credit card fraud
detection [SKSM08], and workflow mining [LKM16]. An approach is to learn an
HMM by the Baum-Welch algorithm [BPSW70], which is a special case of the EM
algorithm [DLR77]. HMMs can be used for estimating the most likely sequence of
hidden states in a dynamic programming fashion by the Viterbi algorithm [Vit67].

8.3. Preliminaries

This section specifies advanced notations for this chapter and recaps how an SCD
matrix can be used to classify documents.

82

8.4. Identifying Complementary Documents

Generally, an SCD ti is a tuple of additional data Ci and the referenced sentences.
In this chapter, we concretize this definition in a way that an SCD ti is an spo-
triple with references to the sentences having the spo-triple. Whereas si, pi, and oi

represent the subject, predicate, and object. To comply with the general notation,
the spo-triple might be added to the additional data Ci.

The general SCD matrix δ(D) builds on a corpus of related documents D. In this
chapter, we have to distinguish between related and not related corpora. Thus, we
call the general SCD matrix related SCD (rSCD) matrix δr(Dr).

Next, we recap how to classify documents using MPS2CD and an rSCD matrix.

Corpus Extension using Similarity Using the MPS2CD similarity values, Kuhr et
al. [KBBM19, KBBM20] present a method with which an agent can classify a new
document d′ by one of the following four categories:

• Quasi copy or Related: Document d′ is classified as sim if the values in the
MPS2CD similarity sequence are mostly high and contain only few entries with
slightly lower values.

• Extension: Document d′ is classified as ext, representing an extension of an-
other document d ∈ D, if d′ is generated by appending a document d, i.e., d′

represents an updated version of d.

• Revision: Document d′ is classified as rev, representing a revision of another
document d ∈ D generated by replacing or removing parts of d.

• Unrelated document: Document d′ is classified as unrel if the values in the
MPS2CD similarity sequence of d′ are mostly low.

In the next section, we define complementarity of SCDs and documents leading to a
new category complement of documents. Then, we describe an approach classifying
documents of the new category complement based on the definitions.

8.4. Identifying Complementary Documents

This section presents an approach for identifying documents containing complemen-
tary content with respect to the content of documents in a given corpus. We use the
task of corpus extension as the application scenario for complementary documents.
However, the given definitions and algorithms can be adapted for other tasks such
as document retrieval. First, we define a binary document classification problem,
i.e., if a document is complementary. Second, we provide a definition of comple-
mentary documents based on SCD complementarity values to solve the problem.

83

8. Complementarity as an Inter-SCD Relation

Third, we present an approach to corpus extension with complementary documents
by identifying a new document d′ as a complement using the previously defined
notions.

8.4.1. Document Classification Problem: Complement

Given an unknown document d′ and a corpus D, an agent might be interested in
whether d′ is a complement to documents in D. Formally, we ask whether d′ is a
complement to d (Complement = true) or not (Complement = false), making the
document classification problem a binary classification problem

arg max
v∈{true,false}

P (Complement = v | d′,D). (8.1)

Since it is non-trivial to get the necessary probability distributions, we solve the
problem of Formula (8.1) by looking at SCDs, defining complementarity in terms
of SCDs and a complement by using the notion of complementary SCDs. Based on
these definitions, we specify a solution approach for corpus extension.

8.4.2. Complementary Documents

To classify a document as a complement, i.e., providing complementary content,
with respect to the documents in the corpus of an agent, we need a formal definition
of complementarity, for which we use the SCDs that are available in an SPO format
and a taxonomy for interrelating entities occurring in them. As such, we transform
the problem given in Formula (8.1) by defining a complement as a document with
a complementarity value that exceeds a certain threshold. Focussing on SCDs in
the spo format also has the advantage that we can automatically extract relational
structures using available NE extraction methods such as OpenIE [AJPM15] to
generate SCDs for documents. We can even use a lexical database of semantic
relations and use hierarchies to interrelate those entities.

Before defining complementary of SCDs and documents, let us consider an example
of a new document containing complementary content to the content of documents
in a corpus. We pick up the example again in the course of this chapter.

Example 8.1. Assume that an agent is working with an individual collection of
documents in corpus D. The documents contain text about competitions at the
Olympic Games 2021 in Tokyo. Thus, vocabulary VD is mainly characterized by
words in the context of sports. The vocabulary of a new document d′ giving a
description about the occurrence of infection of SARS-CoV-2 in Tokyo is different

84

8.4. Identifying Complementary Documents

from VD. In the context of similarity, d′ would probably be classified as unrelated
since the vocabularies VD and Vd′ might be very different. However, the content of
d′ might be complementary to the content of some documents in D and thus, might
support an agent to interpret content from documents in D more suitably.

Definition 8.2 (Complementary SCDs). Given two documents d, d′ and a taxonomy
ξ, an SCD ti ∈ g(d′) is complementary to an SCD tj ∈ g(d) if the entities in ti and
tj are different but the entities are instances of the same concept or the predicates
between the entities share a common meaning in ξ. Formally, the following seven
types of complementarity between SCDs ti and tj exist (↑ refers to the concept in ξ

that an entity belongs to):

(1) s-complementary: ti = (s↑,pi,oi), tj = (s↑,pj,oj),

(2) p-complementary: ti = (si,p
↑,oi), tj = (sj,p

↑,oj),

(3) o-complementary: ti = (si,pi,o
↑), tj = (sj,pj,o

↑),

(4) sp-complementary: ti = (s↑,p↑,oi), tj = (s↑,p↑,oj),

(5) so-complementary: ti = (s↑,pi,o
↑), tj = (s↑,pj,o

↑),

(6) op-complementary: ti = (si,p
↑,o↑), tj = (sj,p

↑,o↑), and

(7) spo-complementary: ti = (s↑,p↑,o↑), tj = (s↑,p↑,o↑).

Let X refer to the set of the different complementarity types {s,p,o,sp,so,op,spo}.
An indicator function Cx(ti, tj), x ∈ X , returns 1 if ti and tj fulfill the conditions
mentioned above for x-complementarity and otherwise 0, including when ti or tj is
not in SPO format.

Generally, it might be possible to adapt the return value of the indicator function
to include uncertainty by returning a value from [0, 1]. Next, we give an example
on complementary SCDs.

Example 8.3 (Complementary SCDs). Assume that document d is in the agent’s
corpus and the agent is faced with a new document d′. Additionally, both documents
are associated with SCDs yielding g(d) = {t2, t4} and g(d′) = {t1, t3} where:

• t1 = (Olympic Games 2021, in, Tokyo),

• t2 = (SARS-CoV -2, spreading in, Tokyo),

• t3 = (UEFA Euro 2020, in, Europe), and

• t4 = (Covid-19, spreading in, London)

85

8. Complementarity as an Inter-SCD Relation

Given the following taxonomy, where solid lines represent the hierarchy between
classes and dashed lines represent instances of classes,

continent

country europe

city

london tokyo

the indicator function Co(ti, tj) returns 1 for i = 1 and j = 4 since both london

and tokyo are instances of class city. Additionally, the indicator function re-
turns 1 for i = 3 and j = 4 since london is a city and city is a subclass of
continent, to which europe belongs, too. Thus, t1 and t4 as well as t3 and t4

are o-complementary.

The different types of complementarity form a lattice as depicted in Figure 8.1,
with the first three types, seen from the bottom, composing the lowest level, the
next three types following on the next higher level, and the spo-type constituting
the top entry. Up the lattice, the SCDs share more and more entities of the same
concept, with the top entry requiring that the three positions are filled with different
instances of the same concept, i.e., what falls under complementarity of higher
levels also falls under complementarity of lower levels. This is different to Definition
1 of [BKB22], which requires all entities share the same concept or be identical.
Definition 8.2 requires the entities to share the same concept or be different, thereby,
further moving away from similarity to difference. A complementary SCD is now
understood as a different SCD only sharing one or multiple identical concepts and
not an identical SCD allowed to share one or multiple different concepts. Thus, the
deviation of related and complementary SCDs will be much larger and the word
vectors in the windows associated with the two types of SCDs will be more distinct.
Next, we define complementary documents based on Definition 8.2.

Definition 8.4 (Complement). The complementarity value c(d′, d) between docu-
ments d′ and d is given by

c(d′, d) =
∑

ti∈g(d′)

∑

tj∈g(d)

∑

x∈X

wxCx(ti, tj), (8.2)

with wx ∈ [0, 1] a weight assigned to each complementarity type and
∑

x∈X wx = 1.
Given a threshold θd, d′ is complementary to d and thus called a complement if

c(d′, d) > θd. (8.3)

86

8.4. Identifying Complementary Documents

Given the complementarity lattice, non-zero weights are only reasonable for types
that do not subsume another. E.g., given spo-complementarity, wx should be set
to zero for all other complementarity types, i.e., ∀x ∈ X , x ̸= spo, as these types
x would subsume spo. For the lowest level, wx = 0 for all x ∈ {sp,so,op,spo}
while ws, wp, and wo can be chosen freely as long as they add up to 1. Another
possibility would be to have non-zero weights adding up to 1 for, e.g., sp and
o, as they cover different positions in the triples and lie on different paths in the
grid, with the remaining x set to 0. The threshold θd depends on a given corpus
and adds subjectivity. θd can be adjusted according to the agent’s need for new
documents. With a need for more documents, an agent may choose a low threshold
in combination with the broadest senses of complementarity, s, p and o. Aiming
for adding only a few documents in the more immediate context, a high threshold
and spo-complementarity might be a fitting choice. In Example 8.3, c(d′, d) = 3
with wo = 1 (Co(t2, t1) = 0). In all other cases, c(d′, d) = 0 as ∀x ̸= o : Cx(ti, tj) = 0
with the present taxonomy.

We use the decision criterion in Formula (8.3) to solve the document classification
problem of Formula (8.1). Within the framework of Kuhr et al.’s document clas-
sification problem, we could focus computing Formula (8.3) for those documents
that are otherwise classified as unrelated, making a distinction between comple-
ment and unrelated. How well this definition works for distinguishing unrelated and
complementary documents is showcased during the evaluation in Section 8.6. But
before, we present how to use the definitions of complementarity for the task of
corpus extension and briefly discuss what else can be done having complementarity
available.

8.4.3. Corpus Extension with Complements

Corpus extension as a task so far has used similarity values, specifically the sequence
of MPS2CD similarity values over a document in order to classify an unknown doc-
ument as either of the document types of sim, ext, rev, and unrel, and then decide

spo

sp so po

s p o

-

Figure 8.1.: The complementarity types of Definition 8.2 in a lattice.

87

8. Complementarity as an Inter-SCD Relation

Algorithm 10 Corpus Extension with Complements

1: function extendComplement(D, d′, θD, {wx}x∈X)
2: Input: Corpus D; New document d′; Threshold θD; Weights {wx}x∈X

3: Output: true (complement/extend) or false (no complement/extend not)
4: if g(d′) = ∅ then
5: Add SCDs (i.e., spo-triples) to d′ using OpenIE

6: c← 0
7: for each ti ∈ g(d′) do
8: for each d ∈ D do
9: for each tj ∈ g(d) do

10: for each x ∈ X do
11: c← c + wxCx(ti, tj)

12: if c > θD then
13: return true

14: else
15: return false

its inclusion based on this outcome. Similar and unrelated documents were ignored
whereas extensions and revisions were added or exchanged with the originals. An
agent performing corpus extension with complementary documents has to answer
the same question about possibly including an unknown document. However, now
the agent aims to extend its corpus with complements. To perform the task, the
agent applies the definitions above for reaching a decision.

Algorithm 10 shows an outline of the workflow the agent follows when presented
with an unknown document d′ for possible inclusion into its corpus D on the con-
dition that d′ is a complement in D. The algorithm uses a corpus-specific threshold
θD, which fulfils the same role as the threshold θd in Formula (8.3) but factors in
that it applies to the whole corpus and not a single document. The first if-condition
asks whether d′ already contains SCDs. If not, the agent uses OpenIE to extract
spo-triples from the text of d′. Then follows a for-loop that accumulates the com-
plementarity values for each SCD ti associated with d′ over all documents in D.
Afterwards, the agent tests the accumulated value against θD to return true if it
considers d′ a complement based on Definition 8.4, and false otherwise.

8.4.4. Discussion

The following paragraphs discuss complements as part of the general classification
problem for the task of document retrieval as well as for augmenting user output by
returning positions of interest.

88

8.4. Identifying Complementary Documents

Complements as a Document Type While we provide a more general approach
in the upcoming section, a direct way to introduce complements as category compl

into the corpus extension by Kuhr et al. [KBBM19, KBBM20] is the following: Their
classification problem is defined given a sequence of MPS2CD similarity values W
computed by Algorithm 2 for an unknown document d′ and a corpus D:

arg max
y∈Y

P (Type = y | W), (8.4)

with Y = {sim, ext, rev, unrel}. Generalizing and merging Formulas (8.4) and (8.1),
we could formulate the classification problem as follows:

arg max
y∈Y

P (Type = y | d′,D), (8.5)

with Y = {sim, ext, rev, unrel, compl}. In Formula (8.5), an unknown document
and the corpus are given. A reasonable workflow to classify an unknown document
would then be to use the document type detection algorithm in [KBBM19, KBBM20]
and then apply Algorithm 10 to the unknown document if the previous classification
returns unrel.

Document Retrieval For document retrieval in the context of complementarity,
i.e., complement retrieval, a user could provide a document d′ for which they want k

complementary documents returned from the corpus D available to the agent. The
agent would then calculate complementarity values for d′ compared to each docu-
ment di ∈ D, i.e., c(d′, di) following Definition 8.4, and return the top-k documents,
i.e., those k documents with the highest complementarity values. In contrast to Al-
gorithm 10, the agent would not sum up the complementarity values but rather store
the current top-k documents with their complementarity value and test whether the
next document di+1 has a higher value than the lowest value currently stored and
replace that document if true.

Augmenting Enrichment: Positions of Interest In general, it is difficult to un-
derstand the reason a new document is classified as a complementary document by
looking at the content of the document. The only thing we know for a document
being classified as complementary is that some entities from a new document share
a class with entities from documents in the corpus. Thus, one might highlight com-
plementary SCDs such that it is possible to identify the positions in a text that are
relevant for Algorithm 10 classifying a document as a complementary document.
We denote those positions as positions of interest.

Identifying complementarity in documents is beneficial for IR agents in several ways,
e.g., for deciding corpus extension, retrieving documents in response to queries, and
identifying relevant positions in the documents.

89

8. Complementarity as an Inter-SCD Relation

With the definition of complementarity in place and a solution approach specified
with Algorithm 10, we are able to detect complementary documents. However, the
classification process is not straightforward, as first the documents are classified as
one of {sim, ext, rev, unrel}. Then, if a document is classified as unrel, a second
classification between {unrel, compl} is performed. In the next section, we describe
how to integrate complementarity in the SCD matrix, allowing for directly classifying
documents as as one of {sim, ext, rev, unrel, compl}.

8.5. Document Classification with Complementarity

and Similarity

The SCD matrix generally only contains related SCDs, thus we call it rSCD ma-
trix. Kuhr et al. classify a new document d′ using similarity by the four document
types {sim, ext, rev, unrel}. To support complementarity, we propose a combined
SCD (cSCD) matrix, containing related and complementary SCDs in one matrix.
The cSCD matrix allows an agent to classify a new document d′ by five document
types {sim, ext, rev, unrel, compl} in one classification process. First, we present
the cSCD matrix and an algorithm to build it, followed by a filtering technique
removing noisy SCDs from a cSCD matrix using the definition of complementarity,
and finally, a straightforward classification process.

8.5.1. Combined SCD Matrix

The cSCD matrix combines two corpora: Dr contains the related documents from
the agent’s corpus, the same corpus Kuhr et al. train their matrix on. The cSCD
matrix is additionally trained on Dc containing complementary documents to the
agent’s corpus. Corpus Dc can be either formed by using Algorithm 10 or by using
expert’s knowledge, i.e., by manually forming a corpus of complementary documents.
Analogously to the general notations, each corpus has a set of SCDs tr

j ∈ g(Dr) and
tc
j ∈ g(Dc). The vocabularies of both corpora are joined, i.e., V = VDr

∪ VDc
and

L = |V|. The cSCD matrix δc(Dr,Dc) is a more specific form of δ(D) described in
Section 3.1.

The first Kr rows belong to the SCDs g(Dr) and the last Kc rows belong to g(Dc).
Each row in the matrix forms an SCD-word distribution vector, again using counts
of words. The vector entry itself represents a probability value describing how likely
it is that a word occurs in an SCD window surrounding the position associated with
the SCD, yielding an SCD-word probability distribution for each SCD associated
with documents in Dr or Dc, respectively.

90

8.5. Document Classification with Complementarity and Similarity

δc(Dr,Dc) =


















w1 w2 w3 · · · wL

tr
1 v1,1 v1,2 v1,3 · · · v1,L

...
...

...
...

. . .
...

tr
Kr

vKr,1 vKr,2 vKr,3 · · · vKr,L

tc
1 vKr+1,1 vKr+1,2 vKr+1,3 · · · vKr+1,L

...
...

...
...

. . .
...

tc
Kc

vKr+Kc,1 vKr+Kc,2 vKr+Kc,3 · · · vKr+Kc,L


















Furthermore, associated with a cSCD matrix is a set of complementarity relations
between the SCDs of the matrix:

Cx = {({tr
i , tc

j},Cx(tr
i , tc

j)) | tr
i ∈ g(Dr), tc

j ∈ g(Dc)}

where x ∈ X refers to a complementarity type and Cx returns a continuous value
from [0, 1]. Note that the complementarity value between two SCDs is symmetric,
i.e., Cx(ti, tj) = Cx(tj, ti) for any SCDs ti, tj. For each SCD tr

i , the complementarity
set Cx represents the corresponding complementary SCDs, e.g., tc

j together with the
value of complementarity Cx(tr

i , tc
j). Thus, given an SCD linked to a document, it is

possible to retrieve the complementary SCDs and linked complementary documents.
The set Cx can also be represented by a Kr ×Kc matrix with the complementarity
values stored in the cells.

Building Combined SCD Matrices

The Supervised Estimator of cSCD Matrices (SEcM), Algorithm 11, creates a cSCD
matrix and the associated set Cx based on two corpora Dr and Dc. SEcM iterates
over all SCDs of both corpora and updates for each sentence the word count vector
based on the influence value I. Afterwards, the relations between the SCDs in the
matrix are calculated applying Definition 8.2 and the complementarity values are
stored in Cx.

If the corpora are not associated with SCDs, first USEM can be used on each corpus
separately. After running USEM, OpenIE can be used to add spo-triples to each
SCD. Finally, the cSCD matrix can be estimated by SEcM.

91

8. Complementarity as an Inter-SCD Relation

Algorithm 11 Supervised Estimator of cSCD Matrices δc(Dr,Dc)

1: function SEcM(Dr, Dc, x)
2: Input: Corpora Dr, Dc; complementarity type x

3: Output: cSCD matrix δc(Dr,Dc); complementarity relations Cx

4: Initialize a (Kr + Kc)× L matrix δc(Dr,Dc) with zeros
5: for each d ∈ Dr ∪ Dc do ▷ Form word distributions
6: for each t ∈ g(d) do
7: for referenced sentence s ∈ t do
8: for each word wi ∈ s do
9: δc(Dr,Dc)[t][wi] += I(wi, s)

10: Normalize δc(Dr,Dc)[t] ▷ Skipped for matrix to contain counts
11: Initialize Cx ← ∅
12: for each tr ∈ g(Dr) do ▷ Extract complementarity relations
13: for each tc ∈ g(Dc) do
14: Cx ← Cx ∪ {({tr, tc},Cx(tr, tc))} ▷ Indicator function Definition 8.2

15: return δc(Dr,Dc), Cx

Filtering Combined SCD Matrices

A cSCD matrix formed by SEcM contains a vector (row) for each SCD from both cor-
pora. However, complementary documents also contain some false-complementary
SCDs, i.e., SCDs for general sentences which can occur in documents of any con-
text. Such false-complementary SCDs are similar to noisy data because the false-
complementary SCDs are considered as complementary when using the cSCD ma-
trix, even though they are not. Depending on the use-case, false-complementary
SCDs might provide useful data but in our scenario they add noise to the re-
sults. Therefore, we introduce the filtered cSCD (cSCDf) matrix, in which the
false-complementary SCDs are removed from the matrix. In the evaluation, we
compare the performance of the cSCD and cSCDf matrix for classification.

During filtering, all SCDs in g(Dr) are kept. SCDs in g(Dc), which are not comple-
mentary by our definition of complementarity, are removed. We use a threshold θδ to
decide if an SCD is complementary, which depends on the corpora, complementarity
type, and cSCD matrix used. Algorithm 12 iterates over all SCDs tc ∈ g(Dc) and
extracts the highest complementarity value of each tc to any SCD tr ∈ g(Dr). If the
highest value is smaller than θδ, the SCD tc is considered to be false-complementary
and the SCD-word distribution δc(Dr,Dc)[t

c] is not included in the cSCDf matrix.

To decide about document extension, an agent faced with an unknown document
d′ has to identify the document type y ∈ Y = {sim, ext, rev, unrel, compl} of d′,
with Y now containing compl as another type compared to previous settings. For

92

8.5. Document Classification with Complementarity and Similarity

Algorithm 12 Filter cSCD matrix to get cSCDf matrix

1: function filterCombinedMatrix(δc(Dr,Dc), Cx, θδ)
2: Input: cSCD matrix δc(Dr,Dc); complementarity relations Cx; threshold θδ

3: Output: cSCDf matrix δc(Dr,Dc)
4: for each tc ∈ g(Dc) do
5: best← 0
6: for each tr ∈ g(Dr) do
7: value← Cx(tc, tr) ▷ Retrieve complementarity value from set Cx

8: best← max{value, best}
9: if best < θδ then

10: Delete row δc(Dr,Dc)[t
c]

11: return δc(Dr,Dc)

document type identification, Cx is no longer needed after filtering. We have to
adapt existing procedures to comply with complementarity, which also includes the
switch from rSCD to cSCD or cSCDf matrices. As the existing procedure is based
on MPS2CDs and their similarity values over the text of d′, we first consider how to
estimate MPS2CDs for a d′ given a cSCD or cSCDf matrix of a corpus Dr ∪ Dc.

8.5.2. Estimate Most Probably Suited SCDs in cSCD Matrices

To estimate MPS2CDs, the agent generates a word count vector from the words of
each sentence of the new document. The agent compares the word count vector of
each sentence with the word count vector of each SCD associated with documents
in the corpus. The SCD where the word count vector has the smallest distance
(highest cosine similarity) to the word count vector of the sentence is associated
with the sentence. We refer to this associated SCD as the combined MPS2CD
(cMPS2CD). A cMPS2CD may originate from the related or complementary corpus.
Thus, a new document associated with mostly complementary cMPS2CDs might by
a complementary document, while a new document associated with mostly related
cMPS2CDs is more likely a similar or revised document.

Algorithm 13 outlines the procedure of estimating cMPS2CDs, which not only re-
turns the cMPS2CDs but also the cosine similarity values of each cMPS2CD and
hence of each sentence in d′. We call the sequence of cosine similarity values for
a document cMPS2CD similarity sequence or in short cMPS2CD similarities. Each
sentence is associated with a cMPS2CD similarity value.

During the estimation of cMPS2CDs, we map the similarity values of related SCDs
to the interval [0, 1] as before, with 0 representing unrelated SCDs. In contrast,

93

8. Complementarity as an Inter-SCD Relation

Algorithm 13 Estimating MPS2CDs using cSCD and cSCDf matrices

1: function combinedMPS2CD(d′, δc(Dr,Dc))
2: Input: Document d′; cSCD or cSCDf matrix δc(Dr,Dc)
3: Output: SCDs g(d′) with similarity values W
4: W ← ∅
5: g(d′)← ∅
6: for each sentence sd′

i ∈ d′ do
7: δ(sd′

i)← new zero-vector of length L

8: for each word w ∈ sd′

i do
9: δ(sd′

i)[w] += I(w, sd′

i)

10: t′ ← arg max
t∈g(Dr)∪g(Dc)

δc(Dr,Dc)[t] · δ(sd′

i)

∥δc(Dr,Dc)[t]∥2 ·
∥
∥
∥δ(sd′

i)
∥
∥
∥

2

11: sim← max
t∈g(Dr)∪g(Dc)

δc(Dr,Dc)[t] · δ(sd′

i)

∥δc(Dr,Dc)[t]∥2 ·
∥
∥
∥δ(sd′

i)
∥
∥
∥

2

12: if t ∈ g(Dc) then ▷ Negative value for complementary SCDs
13: sim← sim · −1

14: g(d′)← g(d′) ∪ t′ ▷ Also add sd′

i as referenced sentence to t′

15: W ←W ∪ {(t′, sim)}
16: return g(d′), W

−1

Complementary

0

Unrelated

1

Related

Figure 8.2.: Range of the MPS2CD similarity values along with their interpre-
tations.

94

8.5. Document Classification with Complementarity and Similarity

complementarity is represented by the interval [−1, 0] left of 0, with 0 representing
not complementary, i.e., unrelated in terms of complementary SCDs, again. Thus,
we overall get the interval [−1, 1] for the cMPS2CD similarity values. The comple-
mentarity of sentences is now expressed by numbers in [−1, 1], where −1 stands for
complementary and 1 for related, with 0 the point of intersection for unrelated SCDs.
Figure 8.2 illustrates the interval of the cMPS2CD similarity values and Algorithm
13 can be imagined as mapping each sentence to the interval.

8.5.3. Classifying Documents

Using the previously described techniques, a cSCD and cSCDf matrix can be trained
and a sequence of cMPS2CDs similarities can be estimated for a new document.
Similarly to Kuhr et al., we apply an ensemble of HMM to analyze the cMPS2CD
similarities.

The cMPS2CD similarities contain for each sentence a similarity value, which aligns
each sentence between complementary and related whereas unrelated is in the mid-
dle. Given this sequence describing a new document, we need to classify the docu-
ment by five document types. For each type, we assume the following behavior of
the sequences:

unrel An unrelated document results in a sequence with mostly small values around
0. The word count vectors of the sentences neither match the vectors of the
related nor the complementary SCDs in the matrix.

compl A complementary document results in a sequence with mostly high negative
values close to −1. The word vectors of the complementary SCDs in the matrix
are more similar to the vectors created on the sentences.

sim While a complementary document results in negative values, a similar docu-
ment results in high positive values close to 1.

ext An extended document shows two sectors: The sequence starts with high pos-
itive values and ends with smaller or even negative values, if extended with
complementary content.

rev In a revised document sentences have been replaced by complementary or unre-
lated content while the remaining sentences remain related. Thus, the sequence
contains high positive, high negative, and even small values.

According to our assumptions about the sequences, we define a suitable HMM.

95

8. Complementarity as an Inter-SCD Relation

Definition 8.5 (Hidden Markov model). An HMM λ for classifying documents is
a tuple (Ω, ∆, A, B, π) consisting of

• (hidden) states Ω = {ω1, ω2, ω3}, with state ω1 representing complementary,
ω2 unrelated, and ω3 related sentences,

• an observation alphabet ∆ = {o−m, . . . , o0 . . . , om}, where each oi represents a
range of MPS2CD similarity values; the observation alphabet is generated by
discretizing cMPS2CD similarity values,

• a transition probability matrix A representing the probability of all possible
state transitions ai,j, i, j ∈ {1, 2, 3} between the three states ω1, ω2, ω3 ∈ Ω,
which implies moving forward in time from time step t to t + 1,

• an emission probability matrix B representing the probability of emitting a
symbol from observation alphabet ∆ for each possible state in Ω, and

• an initial state distribution vector π = π0.

With
∑3

j=1 ai,j = 1 for each ωi ∈ Ω summing over Ω, the entries of A between states
ωi, ωj ∈ Ω, represent the following conditional probability:

ai,j = P (ωj|ωi).

With
∑m

k=−m bj(ok) = 1 for each ωj ∈ Ω summing over ∆, the entries of B represent
the following conditional probability:

bj(ok) = P (ok|ωj).

The semantics of λ is given by unrolling λ for a given number of time steps and
building a full joint distribution.

We compose an HMM of three hidden states because we assume each sentence rep-
resented may be related, unrelated, or complementary. The discrete observation
alphabet ∆ requires discretizing the sequences of cMPS2CD similarities. A dis-
cretization function f : [−1, 1] 7→ ∆ maps each cMPS2CD similarity value sim to
one of the symbols in ∆ based on m thresholds th1, ..., thm:

f(sim) =







o−m −1 ≤ sim < −thm

...

o0 −th1 ≤ sim < th1

...

om thm ≤ sim ≤ 1

96

8.5. Document Classification with Complementarity and Similarity

Algorithm 14 Classification using an ensemble of HMMs and MPS2CD similarities

1: function classifyDocument(d′, δc(Dr,Dc), H)
2: Input: Document d′; cSCD or cSCDf matrix δc(Dr,Dc); HMMs H
3: Output: Type y ∈ Y of document d′

4: y ← nil, p← 0
5: W ← combinedMPS2CD(d′, δc(Dr,Dc))
6: O ← discretize(W)
7: for each HMM λy ∈ H do
8: v ← ViterbiProbability(λy, O)
9: if v > p then

10: p← v

11: y ← λy

12: return y

In general, the transition probability matrix A and the emission probability matrix B

are unknown and have to be learned, e.g., using the Baum-Welch algorithm [Bau72].
Using a set of documents with known document type

y ∈ Y = {sim, ext, rev, unrel, compl}

we calculate the MPS2CD similarities, discretize them, and train an HMM for each
document type. The resulting ensemble of five HMMs

H = {λy|y ∈ Y}

is used by Algorithm 14 to classify a new document.

Algorithm 14 estimates and discretizes the MPS2CD similarities for a new document
and runs the Viterbi algorithm [Vit67] for each HMM in H. The Viterbi algorithm
calculates the most probable sequence of hidden states on each HMM for the given
sequence of observation symbols. Thus, the Viterbi algorithm gives for each HMM
the overall probability that this HMM creates the observed sequence of similarities.
Finally, a document is classified as the document type for which the document type’s
HMM yielded the highest probability.

In summary, this section presents an improved version of the document classification
by Kuhr et al. [KBBM20] to also recognize complementarity. In the next section, we
provide an evaluation comparing the classification performance of documents using
the rSCD, cSCD, and cSCDf matrix.

97

8. Complementarity as an Inter-SCD Relation

8.6. Evaluation

In this section, we present an evaluation illustrating the potential of the definition of
complementarity and the classification approach using cSCD and cSCDf matrices.
We demonstrate that document classification using only an rSCD matrix is not
able to detect complementary documents well. We show that the cSCD and cSCDf

matrices perform significantly better on the problem. Before we look at the results,
we describe the corpus and workflow used in the evaluation.

8.6.1. Corpus

In this evaluation, we use articles from the English Wikipedia as documents in a
corpus. All documents in the corpus contain text about car manufacturers2. Thus,
documents about car manufacturers are related documents. We manually create
document extensions by concatenating related and unrelated documents. To cre-
ate a revised version of a document, we replace 40% of the sentences in related
documents with sentences from unrelated documents. The class of unrelated doc-
uments contains the following 16 Wikipedia articles: Apple Inc., Apple, IPhone,
Microsoft Windows, Google, Donald Trump, Atlantic Ocean, Angela Merkel, Baltic
Sea, SpaceX, Lawyer, Titanic, Management, President (government title), Mountain,
and Snow. Wikipedia articles about the cities where each of the car manufactur-
ers’ headquarters are located act as complementary documents. For example, the
document Toyota City, Aichi, Japan is complementary to Toyota Motor.

Generally, the context of the corpus we are interested in can be described by cars
and their manufacturers. Unrelated documents like Apple Inc. do not represent
the manufacturing of cars and a profession like Lawyer neither represents cars nor
manufacturing. We argue that complementary documents used in the evaluation
fulfill our definition of complements, as the production of cars influences the city
where the manufacturer is located, e.g., employees working at the manufacturer
will reside in the city, the manufacturer pays taxes, and geographical conditions or
historical circumstances of the city may originate from the manufacturer. However,
some of the unrelated documents might be also a bit complementary, e.g., Apple Inc.
contains a short paragraph about an autonomous car. In contrast, the document
about the fruit Apple contains no content about cars or manufacturers. In this
manner, it is important to notice that our definition of complementarity is universal
and is not dependent or trained on a specific corpus. However, the cSCD and cSCDf

matrices are computed to fit the selected corpus.

2https://w.wiki/4FUS

98

https://w.wiki/4FUS

8.6. Evaluation

8.6.2. Workflow and Implementation

All algorithms are implemented using Python. We apply OpenIE [AJPM15] to
extract SCDs in the spo format from each window over the word sequences from
the articles. Additionally, the WordNet [Mil95] interface, provided by the Natural
Language Toolkit3, is used to detect if different entities share the same concept or
a common meaning in the sense of Definition 8.2.

The implementation is optimized for speed and runs on multiple processor cores. It
uses the libraries Gensim4, NumPy5, SciPy6 and Pomegranate7. We run all experi-
ments in a Docker container on a machine featuring 8 Intel 6248 cores at 2.50GHz
(up to 3.90GHz) and 16GB RAM.

Before forming the SCD matrices using Algorithm 11, all documents are prepro-
cessed by (i) removing punctuation, (ii) lowercasing all characters, (iii) stemming
words, (iv) tokenizing the result, and (v) eliminating tokens from a stop-word list
containing 179 words. OpenIE and WordNet’s morphological processing tool Mor-
phy use their own default preprocessing.

Each technique to test has its own workflow: (i) similarity-based serves as baseline
and equals Kuhr et al. [KBBM20], (ii) complementarity-based directly uses the defi-
nition of complementary documents, and (iii) document classification describes how
we apply the cSCD and cSCDf matrix.

Similarity-based

Training and using a similarity-based rSCD matrix works similar to Algorithms 11,
13, and 14 with three differences, (i) no set C is generated, (ii) the set Dc is empty,
and (iii) the HMMs have only two states (related and unrelated).

We interpret the probability of the most likely sequence of an HMM for a sequence
of observations as sequence similarity. Using this similarity, the new documents
are classified, e.g., by taking the most probable HMM’s document type or using a
threshold on the similarity value.

3https://www.nltk.org/
4https://radimrehurek.com/gensim/
5https://numpy.org/
6https://www.scipy.org/
7https://pomegranate.readthedocs.org/

99

https://www.nltk.org/
https://radimrehurek.com/gensim/
https://numpy.org/
https://www.scipy.org/
https://pomegranate.readthedocs.org/

8. Complementarity as an Inter-SCD Relation

Complementarity-based

First, an rSCD matrix is used to classify truly unrelated documents and comple-
mentary documents into a single class unrel. Definition 8.4 detects complemen-
tary documents and thus allows to separate truly unrelated documents from com-
plementary documents. The implementation of Algorithm 10 considers each pair
of SCDs, i.e., spo-triples, between tr

i ∈ g(dr), dr ∈ Dr and tj ∈ g(d′). Due to
the huge amount of pairs, the implementation randomly samples 100 pairs from
each set and consider each of their combinations. Then, all complementarity types
x ∈ {s,p,o,sp,so,op,spo} are computed for each pair tr

i , tj, while returning con-
tinuous values from the indicator function Cx. For each item in the spo-triples of
tr
i , tj, the tool Morphy extracts matching entities in WordNet. If there are multi-

ple possible entities, the implementation considers all possible entities and uses the
path similarity from WordNet to detect if the entities share the same concept or
a common meaning. Entities with path similarities smaller than 0.1 are treated as
different. Finally, the average or maximum across all path similarities is returned
as complementarity value Cx. For example, if the object of ti is represented by the
entities e1, e2 and the object of tj by the entities e′

1, e′
2, the complementarity value

max is given by max{simpath(e1, e′
1), simpath(e1, e′

2), simpath(e2, e′
1), simpath(e2, e′

2)}.
Our implementation normalizes the complementarity values after each sum of Def-
inition 8.4 such that c(d′, d) ∈ [0, 1]. Furthermore, it also calculates cx(d′, d) only
considering complementarity type x, i.e., wx = 1 and wx′ = 0 ∀x′ ∈ X \ x.

Document Classification

To classify documents as one of the five document types, we apply Algorithms 11,
12, 13, and 14. We use the corpus about car manufacturers and train a cSCD and
cSCDf matrix on eight documents about car manufacturers and use eight cities as
complementary documents during the training. For becoming the baseline, an rSCD
matrix on the same eight documents about car manufacturers is trained. Addition-
ally, we build corpora of eight documents for each of the document types, these five
corpora are disjoint to the corpora used while training the matrices. We evaluate
with four cycles of training HMMs and testing their classification performance. In
each cycle the documents are randomly split into four documents for training and
four documents for testing. Afterwards, the the average across the results of the
four cycles is used. As described for the complementarity-based approach in the
previous paragraph, the implementation uses the path similarity of WordNet but
returns the average across all path similarities as the complementarity value Cx in
the set of relations Cx.

100

8.6. Evaluation

0.00

0.25

0.50

0.75

1.00

Complement Extended Revision Similar Unrelated

S
ca

le
d

 S
eq

u
en

ce
 S

im
il

ar
it

y

Similarity−based

0.00

0.25

0.50

0.75

1.00

Complement Extended Revision Similar Unrelated

S
ca

le
d

 C
o

m
p

le
m

en
ta

ri
ty

 V
al

u
e

Complementarity−based

Figure 8.3.: Left: Average scaled similarity values per document type gained
from the similarity-based approach using an rSCD matrix. Right: Average scaled
complementarity values yielded by Definition 8.4.

8.6.3. Results

We present the result in three parts: First, we only compare the similarity and
complementarity values of the differences document types. Second, we present the
classification performance of documents using an rSCD, cSCD, and cSCDf matrix.
Finally, we illustrate which algorithms are needed by the techniques online and
offline, including consequences on the runtime.

In Figure 8.3, the similarity values and complementarity values are scaled to the
interval [0, 1]. In the left plot, the sequence similarities gained from the similarity-
based approach are shown for all five document types. The similarity value of compl

and unrel documents is nearly equal. Thus, it is not possible to detect complemen-
tary documents using the similarity-based approach presented in [KBBM20]. In the
right plot, the complementarity values max cop(d′, d) are shown for all five classes.
Complementary documents have a much higher value than unrelated documents,
therefore it is possible to separate complementary documents from unrelated doc-
uments using a threshold θD in Algorithm 10. Interestingly, extended documents
are nearly as complementary as unrelated documents and revisions are similar to
complements using our definition of complementarity.

In Figure 8.4, we compare the performance of an rSCD matrix with a cSCD and
cSCDf matrix. For all five document types and all three matrices the accuracy
is shown. In all cases, the cSCDf matrix results in the best values, except for
complementary documents. Complementary documents are classified best by the

101

8. Complementarity as an Inter-SCD Relation

0.00

0.25

0.50

0.75

1.00

Complement Unrelated Similar Extended Revision Overall

A
cc

u
ra

cy

cSCDf

cSCD

rSCD

Figure 8.4.: Accuracy classifying each document type using a cSCDf, cSCD, or
rSCD matrix.

cSCD matrix. Presumably, the cSCD matrix contains more relevant information
about complementary documents than the cSCDf matrix after the filtering. Overall,
the cSCDf matrix performs best, the rSCD matrix worst and the cSCD in between.

In general, the accuracy values in this five-classes setting are lower than the results
gained by Kuhr et al. with four classes. Adding a fifth type of documents increases
the difficulty of the classification problem. Randomly choosing one of five types
would result in an accuracy of 0.2 while we reach accuracies between around 0.4 and
0.75. Compared to Kuhr et al., we use sentences, i.e., a form of a tumbling window,
instead of sliding windows over the text, which might also influence the accuracy as
well. However, using the cSCDf (and cSCD) matrix improves the accuracy values
significantly in our evaluation, especially compared to the rSCD matrix, which is
the basis of the approach by Kuhr et al.

In Figure 8.5, precision, recall and F1-Score are shown for each document type and
matrix. Again, we notice that the cSCD matrix works best on the complement docu-
ment type while the cSCDf matrix works best overall. Especially, similar, unrelated,
and complementary documents are classified well. Classifying extended and revised
documents seems to be more difficult because they consist of related, unrelated,
and maybe even complementary sentences. For an HMM, it is difficult to model
the cMPS2CD similarities of a revised document, because the sequence may contain
high positive, high negative, and even small values that do not follow any scheme.
Working with sliding windows or larger amounts of documents would result in more
data, which can be used to train the cSCD or cSCDf matrices and might lead to
overall better results.

102

8.6. Evaluation

0.00

0.25

0.50

0.75

1.00

cSCDf cSCD rSCD

V
al

u
e

Complement

0.00

0.25

0.50

0.75

1.00

cSCDf cSCD rSCD

V
al

u
e

Unrelated

0.00

0.25

0.50

0.75

1.00

cSCDf cSCD rSCD

V
al

u
e

Similar

0.00

0.25

0.50

0.75

1.00

cSCDf cSCD rSCD

V
al

u
e

Extended

0.00

0.25

0.50

0.75

1.00

cSCDf cSCD rSCD

V
al

u
e

Revision

Precision Recall F−Score

Figure 8.5.: Precision, recall, and F1-Score classifying each document type us-
ing a cSCDf, cSCD, or rSCD matrix.

Technique Definition 8.4 only rSCD cSCD cSCDf

Algorithm Offline Online Offl. Onl. Offl. Onl. Offl. Onl.

Form rSCD matrix ✓

Form cSCD matrix ✓ ✓

Filter matrix, cSCDf ✓

Estimate MPS2CD ✓ ✓ ✓ ✓ ✓ ✓

Train HMMs ✓ ✓ ✓

Classify with HMMs ✓ ✓ ✓

WordNet Similarity ✓ ✓ ✓

Figure 8.6.: The different algorithms used by the techniques marked if needed
online or offline. Complement classification with Definition 8.4 only classifies
unrel and compl; to classify between all five document types the algorithms of
rSCD are also needed.

103

8. Complementarity as an Inter-SCD Relation

In Figure 8.6, the algorithms needed by the techniques are shown. For each tech-
nique, the algorithms needed offline (training) and online (classifying a new docu-
ment) are listed. Regarding the runtime of the approaches, the calculation of the
path similarities in WordNet are the most expensive part. Thus, the approaches us-
ing WordNet are much more expensive, especially if WordNet is used online during
the classification. For example, calculating the values for the right plot of Figure
8.3 has a total runtime of 2.25 hours and as we see by the check mark in the first
column of Figure 8.6, the calculations have to be done online. In contrast, forming
the cSCD matrix used in the evaluation needs 41.1 hours, however, this is done only
once and offline. Forming an rSCD matrix and training an ensemble of HMMs takes
a couple of minutes. The classification used by rSCD, cSCD and cSCDf matrices
only quickly estimates cMPS2CDs and uses the pre-trained ensemble of HMMs.

In summary, using the definition of complementarity we are able to distinguish un-
related and complementary documents. However, the calculation of complementary
SCDs using WordNet is slow. To allow a fast straightforward classification of all five
document types, the cSCD and cSCDf matrix combine corpora of complementary
and related documents.

8.7. Interim Conclusion

If an agent is presented with a new document, it has to decide whether to extend
its corpus with the new document or not—depending on the document’s type. The
approach presented in this chapter enables the agent to classify a document into five
types: Similar, revised, extended, unrelated, and complementary. The approach op-
erates on the SCDs of the new document and the agent’s corpus during classification.
To this end, we first give a definition of complementary SCDs and define comple-
mentary of documents based on their complementary SCDs. Second, we present the
approach, which forms a cSCD matrix containing related and complementary SCDs
for detecting complementarity of documents among the four other document types.
In an evaluation, we demonstrate that the definition of complementarity allows an
agent to separate unrelated and complementary documents. Additionally, we show
that the performance using the combined SCD-word distribution matrix classify-
ing documents of five types outperforms previous techniques not using combined
SCD-word distribution matrices.

Generalizing Relations among SCDs Complementarity is only one conceivable
inter-SCD relation. ReFrESH introduces factors during the propagation step of
relations, too. Thus, there are more relations among SCDs to be used with the
techniques introduced in this chapter.

104

8.7. Interim Conclusion

Currently, the cSCD matrix consists of two parts representing related and comple-
mentarity documents. However, further parts can be easily appended to support
further types of documents or different relations. Likewise, the cMPS2CD algorithm
can be generalized for further types or relations. Presumably, the structure of sim-
ilarity values needs to be changed because a third dimension cannot be added to
a decimal number. However, a similarity vector representing the similarity of each
type or relation would solve this issue.

Four Solutions to Four Problems In Section 3.2 we identified four problems cre-
ating our SCD-based IR agent. USEM, LESS, FrESH, and ReFrESH solve Problems
I - III. Together, these techniques close the cycle of estimation, enrichment, usage,
and improvement approaching text understanding. In this chapter, we provide the
solution to Problem IV. As already stated, USEM can easily be combined with
SEcM to estimate cSCDs matrices in an unsupervised manner.

Now that we have all the techniques, we can move on to the application part. In the
second part, we describe an information system providing the SCD-based IR agent
and two more exemplary use-cases of SCDs.

105

Part II.

Application

107

9. Composing an Information System using
SCDs

This chapter is based on section 5 of the following publication.

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: Unsupervised
Estimation of Subjective Content Descriptions in an Information
System in International Journal of Semantic Computing, 2024
https://dx.doi.org/10.1142/S1793351X24410034

Magnus Bender developed the initial idea, implemented the information system,
and wrote the manuscript. The other three authors fundamentally supervised the
research by discussing ideas, proofreading the manuscript multiple times, and giving
feedback. Section 5 of the journal article was taken verbatim to this chapter and
then extended for the dissertation.

9.1. Introduction

In Chapter 3, we took a look at the big picture of SCDs. In doing so, we selected
the example of an SCD-based IR agent. For such an agent we identified problems
and provide solutions in Part I.

Hence, in this chapter we outline an SCD-based IR agent as described in Section 3.2.
We integrate the IR agent in an information system accessible via a web interface.
The general use-case is depicted in Figure 9.1: A user, possibly a human or another
agent, supplies a corpus that represents the general field of interest of the user. The
interaction with the IR agent (symbolized by the robot in Figure 9.1) is done via
a computer displaying the information system. The system itself provides IR and
corpus extensions using SCD. Hence, we call it the SCD-based Information System
(SIS).

SIS uses the same implementation that is also being used with the evaluations of
this dissertation in Part I. However, it does not implement all techniques1, but pro-
vides the full cycle toward text understanding. First, USEM (Chapter 4) and LESS

1Not implemented: FrESH (Chapter 6), Complementarity (Chapter 8)

109

https://dx.doi.org/10.1142/S1793351X24410034

9. Composing an Information System using SCDs

Agent in

Information

System

‣Tasks, e.g.,

‣ Information Retrieval

‣ Corpus Enrichment

‣Techniques

‣ SCDs

Any corpus

brought, e.g.,

by human.

Figure 9.1.: The information system provides an web interface. In the system
an SCD-based IR agent is embedded.

(Chapter 5) are used to create initial SCDs with labels for the supplied corpora. Af-
terwards, IR is conduced using the SCDs together with MPS2CD. Finally, ReFrESH
(Chapter 7) is used to improve the SCDs with feedback.

This chapter describes SIS. Generally, a web based information system requires
many features. First, the system needs an management of user accounts and of
different user supplied corpora. Additionally, the system should provide a viewer
for the documents of each corpus. And after that, the features that actually use
SCDs will follow.

In the next sections, we first describe the basic structure of SIS. We then demonstrate
how SIS can assist a user in analyzing user-submitted corpora.

9.2. Basic Structure

SIS is a web application which consists of an web interface written in HTML, CSS,
and JavaScript. On the server side, SIS is written in Python using FastAPI2 and
runs inside a Docker container. SIS stores all corpora on the server, as well as all
models consisting of the estimated SCDs.

The web interface is used to manage corpora and navigate through the contained
text document and estimated SCDs. Figure 9.2 shows the index page which lists all
corpora available in SIS. The upper figure shows the non-expert mode. This mode
reduces the visible options available to users and mostly only shows the corpora

2https://fastapi.tiangolo.com/

110

https://fastapi.tiangolo.com/

9.2. Basic Structure

Index of Corpora Corpora Account Logout Magnus Expert Mode

Index of Corpora
Short name Name Date Open Status

BGB Civil Code 14.11.2022 21:30:10 Corpus ✓ More

BGBAT Civil Code (General Part) 14.11.2022 21:30:10 Corpus ✓ More

BVerfGG Federal Constitutional Court Law 16.05.2023 18:15:49 Corpus ✓ More

GG Constitution 13.09.2022 21:35:02 Corpus ✓ More

Index of Corpora Manage Corpora Corpora SCD Distributions Account API Logout Magnus Expert Mode

Index of Corpora
Short name Name Date Open Status

BGB Civil Code 14.11.2022 21:30:10 Corpus SCD Distribution ✓ More

BGBAT Civil Code (General Part) 14.11.2022 21:30:10 Corpus SCD Distribution ✓ More

BVerfGG Federal Constitutional Court Law 16.05.2023 18:15:49 Corpus SCD Distribution ✓ More

GG Constitution 13.09.2022 21:35:02 Corpus SCD Distribution ✓ More

Figure 9.2.: Both figures: The index page of SIS. This page shows the available
corpora and provides the options to open each corpus. In right part of navigation
bar, the account management is available. Upper figure: This non-expert mode
provides a reduced set of available buttons. Lower figure: The expert model shows
more features. E.g. it provides direct access to the SCD matrix distributions or
the JSON API.

111

9. Composing an Information System using SCDs

and a button to open each corpus. In the navigate bar at the top, it is possibly
to manage the user account and activate the expert mode. In contrast, the expert
mode, shown in the lower image, offers many more options. Again, all corpora are
listed. However, the SCD matrix distributions and the JavaScript Object Notation
(JSON) API is directly accessible.

The API button leads us to the next general feature of SIS. Besides the HTML based
GUI, which can be used by humans, there exists a JSON API. Using the API, other
applications can send queries to SIS and get machine readable responses in JSON
format. This allows other agents to use SCDs without requiring special knowledge
of techniques like USEM or LESS. For example, the API of SIS is used as source
of information for a humanoid service robot. Thereby, the humanoid service robot
provides a human-friendly way of interaction with information retrieval agents and
thus brings technology closer to the people [SBM23].

Generally, SIS is capable of processing corpora in different languages, including
English and German. Corpora can be supplied as plain texts, PDF documents, or
law texts in XML format3. For law texts, the viewer provides some special features
like highlighting and linking references4. The features using SCD are the same for
all types of corpora. We demonstrate the features of SIS using the example of the
BGB.

9.3. Working with Corpora

Let us assume, Charlie wants to find similarities and similar paragraphs in the
German Civil Code, the BGB. First, Charlie opens the web interface of SIS in a
web browser and uses username and password for authentication. In our case, the
corpus BGB is already available in SIS and thus Charlie can directly choose to view
the BGB. The status of a corpus is shown on the index page for each corpus, i.e.,
the green tick marks in Figure 9.2.

If a corpus is not available in SIS, the corpus may be imported by uploading a zip
archive containing either multiple plain-text documents, PDF documents, or a single
XML file3. The text documents in the zip archive then represent the corpus. After
the upload, USEM estimates initial SCDs and LESS labels for the SCDs. After
USEM and LESS have finished, the corpus can be viewed by Charlie.

3Document type definition: https://www.gesetze-im-internet.de/dtd/1.01/gii-

norm.dtd
4Side note in conjunction with Chapter 8: References between law paragraphs are another type

of relation among SCDs.

112

https://www.gesetze-im-internet.de/dtd/1.01/gii-norm.dtd
https://www.gesetze-im-internet.de/dtd/1.01/gii-norm.dtd

9.3. Working with Corpora

Previous Parent Next

Previous Parent Next

Hover SCD Windows

1If the foundation transaction consists of a disposition upon death, the probate court shall notify this to
the competent authority for recognition, unless requested by the heir or the executor. If the foundation2

transaction does not satisfy the requirements of §81 (1) 1 sentence 3, the foundation shall be given
articles of association by the competent authority before recognition or incomplete articles of association
shall be supplemented; the will of the founder shall be taken into account. The seat of an foundation,
unless otherwise provided, is the place where the administration is conducted. In case of doubt, the
founder's last domicile in Germany shall be deemed to be the registered ofÏce.

4

3

§ 83
Foundation upon Death

Figure 9.3.: A paragraph or page of the corpus shown in the web interface. The
buttons below and above the content allow to navigate forward and backward.
SCD windows are highlighted in yellow on hover.
Only for demonstration purposes, we exchange the original German texts with
their English translations. SIS supports English corpora, but there exists no
English XML file for the BGB.

113

9. Composing an Information System using SCDs

Each content, e.g., law paragraph or page of a PDF document, is visualized as
shown in Figure 9.3. Additionally to this content itself, buttons to navigate to the
previous and next paragraph are available. The SCD windows are highlighted in
yellow on hover, i.e., when the mouse is moved over them. Doing a double-click on
a highlighted window opens the assigned SCD.

Most corpora are divided into multiple sections and thereby provide some type of
structure to depict. In Figure 9.4, a larger area of the web interface visualizing
corpora is shown. On the left side of the content, a table of contents is available and
can be used to jump to different sections. Above the content, a small bar shows the
location of the currently shown content as path through the structure of the corpus.
In the upper right corner, an input box for terms to search the corpus is available.
Only a simple full text search is carried out here.

Assume, Charlie reads different paragraphs of the BGB and is then interested in
similar paragraphs to the third sentence of § 83 (highlighted in Figure 9.3). Hence,
Charlie does a double-click on the highlighted sentence and Charlie’s web browser
opens the assigned SCD to the just double-clicked SCD window.

9.4. Working with SCDs

After doing the double-click, Charlie’s web browser visualizes the selected SCD. The
SCD was previously estimated by USEM and labelled using LESS. USEM provides
three methods with different hyperparameters which result in multiple models for
one corpus. Algorithm 4 provides an approach to select the best model. If Charlie
uses SIS in the non-expert mode, Charlie notices nothing about the internal steps
of USEM, LESS, and model selection. The selected SCD is visualized using the best
model.

However, if Charlie uses SIS in the expert mode, SIS shows a model selection
overview to Charlie. Such a model selection overview is shown in Figure 9.5. The
overview lists all three methods of USEM with different hyperparameters. An op-
tion where nothing is merged, i.e., each sentences in one SCD, is also available. The
best model identified by Algorithm 4 is marked with a star, e.g., the eighth model
estimated by the greedy method with a threshold of 0.3.

Viewing SCDs in expert mode shows a navigation bar to switch between the dif-
ferent hyperparameters of one method of USEM. For example, Figure 9.6 shows
this navigation bar for the seven models estimated by K-Means. The navigation
bar enables Charlie to compare the SCD for one sentence of the corpus in different
models. Hence, it simplifies the manual selection of the best model for the current
task.

114

9.4. Working with SCDs

1

Chapter 1 – Gen

2

Chapter 2 – Regi

2

Subtitle 2 – Foundatio

3

Subtitle 3 – Legal Pers

2

Section 2 – Things and Animals

3

Section 3 – Legal TransactionsLegal Transactions

1

Title 1 – Legal Capacity

2

Title 2 – Declaration of Inte

3

Title 3 – Contract

4

Title 4 – Conditions and Ti

5

Title 5 – Agency and Attorn

Book 1 / Section 1 / Title 2 / Subtitle 1 / Chapter 1 / § 24

§ 24
Seat

Search

The seat of an association, unless otherwise provided, is the place where
the administration is conducted.

Previous Parent Next

Previous Parent Next

Figure 9.4.: View the documents of a corpus in SIS via the web interface. On
the left side a table of contents is shown, while in the middle of the right side
content is shown. In the upper right corner a full text search for the corpus is
available.

115

9. Composing an Information System using SCDs

No Merge

Greedy by Cosine Similarity

Cluster by KMeans

Cluster by DBScan

0 – Initial, no merge

1 – Merged identical

2 – Merged ≥ 0.9

3 – Merged ≥ 0.8

4 – Merged ≥ 0.7

5 – Merged ≥ 0.6

6 – Merged ≥ 0.5

7 – Merged ≥ 0.4

8 – Merged ≥ 0.3

9 – Merged ≥ 0.2

10 – Merged ≥ 0.1

Figure 9.5.: The model selection, which is only shown with the expert mode.
Otherwise, Algorithm 4 selects the best model, which is also marked by a star.
The different models are caused by the three methods and multiple hyperparam-
eters of USEM.

Matrix and SCD Navigation
1 – Merged by
factor 0.8

0 – Initial, no
merge

2 – Merged by
factor 0.6

3 – Merged by
factor 0.4

4 – Merged by
factor 0.3

5 – Merged by
factor 0.2

6 – Merged by
factor 0.1

SCD ID 25Entire Matrix Previous Next

Figure 9.6.: The different models resulting from different hyperparameters of
a method of USEM.

116

9.4. Working with SCDs

SCD ID 25Entire Matrix Previous Next

Words of this SCD's Distribution
place 0.143

otherwise 0.143

seat 0.143

provide 0.143

conduct 0.143

administration 0.143

foundation 0.071

association 0.071

Windows of this SCD 2
Paragraph Window Excerpt

§ 24 25 Seat
The seat of an association, unless otherwise provided, is the place where the administration is
conducted.

§ 83
284

Foundation upon Death
1If the foundation transaction consists of a disposition upon death, the probate court shall notify this to
the competent authority for recognition, unless requested by the heir or the executor. If the foundation2

transaction does not satisfy the requirements of §81 (1) 1 sentence 3, the foundation shall be given
articles of association by the competent authority before recognition or incomplete articles of association
shall be supplemented; the will of the founder shall be taken into account. The seat of an foundation,
unless otherwise provided, is the place where the administration is conducted. In case of doubt, the
founder's last domicile in Germany shall be deemed to be the registered ofÏce.

4

3

Seat Association Place Where Administration
Estimated Label for this SCD

Share

Figure 9.7.: The SCD is visualized with its word distribution and the refer-
enced sentences. There is a list of referenced sentences, where each sentence is
highlighted yellow. For each sentence the red button triggers ReFrESH on this
sentence. On the top it is possible to navigate through the SCDs of the corpus
and view the entire SCD matrix.

117

9. Composing an Information System using SCDs

Figure 9.7 shows the visualization of an SCD. First, the most probable words of the
SCD-word distribution are shown and second the estimated label by LESS. In this
example, the label is truncated and the stop words are removed. Below, the refer-
enced sentences are listed. The list does not only consist of the referenced sentences
of the SCD. Each referenced sentence is shown as excerpt of the corpus together
with its surrounding content while the SCD window itself is again highlighted yel-
low. Showing the surrounding sentences is more human friendly and allows Charlie
to grasp the context of the referenced and similar sentences more quickly. Thus,
Charlie can identify the most relevant sentences for Charlie’s information need and
choose to open a corpus’ paragraph or SCD window using the blue or gray buttons
left of the excerpt.

If Charlie detects a sentence which does not match the SCD, the red button with the
cross triggers ReFrESH on this sentence. ReFrESH updates the SCD and reassigns
the sentences to new or better matching SCDs. If Charlie is still not satisfied with
the result of ReFrESH, Charlie can click the button triggering ReFrESH again. SIS
also provides the possibility to reset the changes made by ReFrESH, i.e., Charlie
may try ReFrESH without risks.

Let us assume, an SCD matches Charlie’s information need and Charlie wants to
share this SCD with others. In the upper right corner of Figure 9.7 SIS displays a
share button. Clicking this button copies a permanent Uniform Resource Locator
(URL) to the visualization of the SCD into Charlie’s clipboard. Items and views of
SIS can be cited as hyperlink using this URL.

However, it could also be the case that the SCD does not fulfill Charlie’s information
need and all sentences are suitable for the SCD, i.e., the red ReFrESH button does
not help. In this case, it also possible to browse all the SCDs estimated by USEM.
The entire SCD matrix, the previous, and next SCD can be viewed with the upper
buttons.

In Figure 9.8, the visualization of an estimated SCD matrix is shown. As there
are many SCDs in one matrix, there are multiple pages listing all the SCDs. A
pagination bar at the on top allows to move from one page to the next. Above the
pagination, some statistics of the matrix are shown. Below the pagination, a short
overview of each SCD is shown: The overview consists of the top 10 words of the
SCD-word distribution, the label estimated by LESS, the ids of the referenced SCD
windows, and the number of referenced windows. It is possible to open each SCD
with the blue button on the left and the referenced windows using the gray buttons
on the right below the label.

However, there is a huge amount of SCDs and Charlie can hardly go through all the
pages of SCDs to identify the most relevant SCD for Charlie’s information need.
Thus, SIS provides a MPS2CD based search through all the SCDs.

118

9.4. Working with SCDs

Matrix Statistics
Number of windows 11904

Number of words 2621

Number merges 2381

Number of SCDs 9523

SCDs and Windows
First « ... 14 15 16 17 18 19 20 21 ... » Last

SCD Top 10 Words Windows
#

Windows

25 place
otherwise
seat
provide
conduct
administration
foundation
association

25 284 2

28 legal
representative
status
without 29 11558

2

41 association
seat
district
which

42 133 2

Seat Association Place
Where Administration

Status Legal
Representative

District Association Seat

Figure 9.8.: The SCDs of an SCD matrix are shown across multiple pages
with a navigation between the pages on top. Each SCD is depicted by its word
distribution, a label, the ids of the referenced SCD windows, and the number of
referenced windows. There is a button to view each SCD on the left side and
some statistics on top.

119

9. Composing an Information System using SCDs

The MPS2CD algorithm estimates a most probably suited SCDs for a single previ-
ously unseen text document. Here, the unseen text document is the user supplied
query representing the user’s information need. For this search query, the most
probably suited SCDs are identified and displayed to the user. Thus, SIS provides
a powerful search using the SCDs of the corpus.

In Figure 9.9, the MPS2CD based search is shown. User Charlie types the query
into the textbox on top and hits the search button. Then, SIS uses MPS2CD and
shows a list of most probably suited SCDs in descending order of similarity. For
each MPS2CD the similarity score and the label is shown.

Charlie can unfold each SCD in the list to get the referenced sentences of the SCD.
Again, for each referenced sentence an excerpt of the corpus with its surrounding
content is shown while the SCD window itself is highlighted yellow. Thus, Charlie
can identify the best fitting SCD and view the SCD or the content by clicking the
buttons. The MPS2CD based search provides a button to get a hyperlink for sharing,
too.

Overall, SIS provides an interactive and visualized interface for humans to interact
with an SCD-based IR. Especially SIS runs unsupervised and with a small com-
putational footprint. It allows users to import their corpora and browse all the
documents. Labels help the users to grasp the estimated SCDs which represent the
concepts and locations across the corpus. Additionally, the MPS2CD based search
allows the users to formulate a query using their own words. Furthermore, users can
create improved versions of initially estimated SCDs using ReFrESH.

120

9.4. Working with SCDs

Search SCDs (using MPS²CD)

Search

Results
25 0.7893522173763263

Paragraph Window Excerpt

§ 24 25 Seat
The seat of an association, unless otherwise provided, is the place where the administration
is conducted.

§ 83
284

Foundation upon Death

41 0.49613893835683387

The seat of an association shall be the place of its administration.

1If the foundation transaction consists of a disposition upon death, the probate court shall notify this to
the competent authority for recognition, unless requested by the heir or the executor. If the foundation2

transaction does not satisfy the requirements of §81 (1) 1 sentence 3, the foundation shall be given
articles of association by the competent authority before recognition or incomplete articles of association
shall be supplemented; the will of the founder shall be taken into account. The seat of an foundation,
unless otherwise provided, is the place where the administration is conducted. In case of doubt, the
founder's last domicile in Germany shall be deemed to be the registered ofÏce.

4

3

Share

Seat Association Place Where Administration

District Association Seat

Figure 9.9.: The MPS2CD based search fetches the most similar SCDs based
on a user supplied query. The query is inserted into the textarea on top and
the similar SCDs are shown together with a similarity score and their referenced
sentences.

121

10. SCDs in Further Domains

The Section 10.2 of this chapter is based on section 6 of the following publication:

• Thomas Asselborn, Sylvia Melzer, Said Aljoumani, Magnus Bender, Florian
Andreas Marwitz, Konrad Hirschler and Ralf Möller: Fine-tuning BERT
Models on Demand for Information Systems Explained Using Train-
ing Data from Pre-modern Arabic in Proceedings of the Humanities-
Centred AI (CHAI) Workshop at KI2023, 46th German Conference on Ar-
tificial Intelligence, 2023
https://ceur-ws.org/Vol-3580/paper5.pdf (Slides: https://

dx.doi.org/10.25592/uhhfdm.13423)

Section 6 of the workshop paper was taken to Section 10.2 and then adapted for the
dissertation. For Section 6 of the workshop paper: Magnus Bender developed the
initial idea and mainly wrote the section. Florian Marwitz lectured and extended
the section. Ralf Möller fundamentally supervised the research by discussing ideas,
proofreading the section, and giving feedback.

10.1. Introduction

An SCD-based IR agent embedded in an information system like SIS is one use-case
of SCDs. In this dissertation, the IR agent provides the read thread which connects
all the chapters and techniques. However, SCDs can be used in different use-cases,
too.

This chapter shows two possible applications of SCDs in wider domains. First, we do
not use SCDs as main model, but as post-processing technique to optimize responses
before they are sent to users. For this we especially need USEM and MPS2CD.

Second, we consider how the SIS can be integrated in other applications. Especially
it is important to keep the barriers of using SIS as low as possible.

123

https://ceur-ws.org/Vol-3580/paper5.pdf
https://dx.doi.org/10.25592/uhhfdm.13423
https://dx.doi.org/10.25592/uhhfdm.13423

10. SCDs in Further Domains

10.2. Humanities Aligned Chatbot

Often IR services are available through a web interface provided by an information
system. Thus, users need to fiddle around with different interfaces and each inter-
face needs to be created for the specific tasks of a user. Typically, scholars in the
humanities work with large corpora that they need to analyze. Besides providing
different interfaces per task, the scholars need to get to know each new interface.
Instead, we would like to build a system with a more general interface. The system
should allow the scholars to supply their corpora easily and to interact in a more
natural way.

As solution, we outline ChatHA, a Humanities Aligned Chatbot. We adopt the
mechanism of fine-tuning an LLM, e.g., version 4 of GPT [RN18]. Fine-tuning
LLMs is a step to adapt an already pre-trained LLM to a specific task or corpus. A
pre-trained LLM is already generally trained to process and generate language, but
lacks a specific task. ChatHA runs the fine-tuning of the pre-trained LLM for each
user supplied corpus. Afterwards, the fine-tuned models know the corpus well and
still has the ability to process and generate language.

The fine-tuned model can be used to provide a chatbot that can answer natural
language questions about the corpus. In contrast to publicly available chatbots,
ChatHA gets fine-tuned on the specific data in the user supplied corpus. Hence,
ChatHA is able to provide detailed answers based on the available data. Addition-
ally, the ability to process natural language questions and providing the answers the
same way lowers the barriers for the humanities scholars to use the system. It is not
necessary to create a graphical user interface for a task, as each task can be sent as
a textual question to ChatHA.

Even the extraction of the corpus can be done with the help of an LLM. If the
user supplies the text documents of the corpus as files, these files can be used for
fine-tuning in the next step. However, a user may specify a more general description
of the corpus, e.g., provide an hyperlink to a web site with the text documents. In
this case, ChatHA needs to download the corpus before it can start the fine-tuning.
AutoGPT [YYH23] is a chatbot for more sophisticated tasks. The idea is, that
AutoGPT automatically splits the question into multiple smaller ones. Thereby,
each question is directly answered by AutoGPT itself. In doing so, it is for example
possible to automatically crawl the web and download the user specified corpus.

Using AutoGPT it is also possible to do corpus extension and search for information
which goes beyond the information available in the corpus. For example, correspond-
ing academic publications and further web resources about the topic could be au-
tomatically included. Generally, AutoGPT can be used to answer more challenging
questions that require deeper understanding and expressiveness.

124

10.2. Humanities Aligned Chatbot

Hi, how can I help?

I would like to ask a question about the corpus of the German

Civil Code (BGB, https://www.gesetze-im-internet.de/bgb/).

Please wait while I analyze the corpus (download the text

documents, fine-tune the LLM, and prepare the SCDs).

I am ready now!

Where does an association has its seat?

A association normally has its seat at the place

where the administration is conducted. [§ 24]

This normally also holds for a foundation which has

its seat at the place of the administration. [§ 83]

However, there may be deviating agreements.

Type a query …

Figure 10.1.: A fictitious conversation with ChatHA about the BGB as
mockup. It uses the same examples already used with the SIS and MPS2CD
in Figure 9.9.

However, a system like ChatHA built automatically and with less supervision also
implies some issues: LLMs have no true understanding of the corpus and its content,
they try to combine the best answer based on texts they processed during training.
Therefore, LLMs are prone to hallucinations, erroneous answers invented by the
LLM, and do not cite their sources. To combat this issues, we do not output the
raw LLM output during question answering, but rather post-process it to include
citations. The obtained result is then displayed to the user and the citations allow
the user to validate the answer.

An example for a possible conversation with ChatHA is shown as mockup in Figure
10.1. The user sends a question including a hyperlink to the corpus. ChatHA now
needs to download this corpus, in the example the BGB, and fine-tune the LLM.
Additionally, ChatHA prepares SCDs for the post-processing of the raw LLM output.
When ChatHA is ready for questions about the BGB, the user asks a question (the
question is similar to the query in Figure 9.9). ChatHA answers with the post-
processed answer of the fine-tuned LLM. Thereby, it uses SCDs to add citations to
text documents in the corpus, e.g., §§ 24, 83.

125

10. SCDs in Further Domains

We now describe this post-processing and the overall workflow in more detail: First,
we choose some pre-trained LLM. We opt for using a pre-trained version to include
basic natural language understanding and general query answering. Second, the
user, in our case a humanities scholar, chooses on which types of texts the LLM
should be fine-tuned on. The texts do not have to be in English, e.g., Arabic or
Tamil [AMA+23, BBG+21b] are also possible. This step composes the corpus for
our LLM and ensures the alignment for humanities of the fine-tuned LLM. Third,
we fine-tune the LLM with the selected data and create the chatbot by this step.
However, we still have the issue of hallucinations and missing citations.

As a solution, we apply SCDs. Using the SCD matrix, an SCD can be identified by
the MPS2CD algorithm for any new and unseen sentence. MPS2CD identifies the
most suitable SCD from the set of known SCDs associated with the text documents.
Hence, using MPS2CD it is possible to create a link from a new and unseen sentence
to an SCD and all sentences this SCD is associated with.

Coming back to ChatHA, we lack SCDs on the corpus used for fine-tuning. Using
USEM we add these SCDs to the corpus used for fine-tuning—each sentence gets one
SCD. Afterwards, each SCD represents a topic or concept mentioned in the corpus
and all sentences about each topic or concept belong to the same SCD. Thus, our
SCDs represents the various topics or concepts in the corpus and the sentences that
mention them.

Using SCDs we can solve the issue of hallucinations and missing citations in the
output of the LLM. For each sentence in the output, MPS2CD identifies an SCD
from the corpus. In doing so, a link from the output of the LLM to the SCDs of the
corpus and further on to sentences of the corpus is created. These links can now be
used as citations shown in the output pointing to relevant sentence in the corpus
used for fine-tuning.

Finally, ChatHA is ready to be used: A humanities scholar inputs a question about a
previously supplied corpus using natural language. This question is first sent to the
LLM and its output is post-processed in the following way: We apply MPS2CD on
the raw output to identify an SCD for each sentence. Sentences for which no SCD is
found may be hallucinations and are omitted because there is no evidence of SCDs.
The processed output is then displayed to the user alongside with the SCDs for each
sentence. For each sentence and SCD, ChatHA may offer the possibility to view this
SCD in SIS or to open each of the sentences in the corpus used for fine-tuning which
are associated to the same SCD. Additionally, if further visualization is available for
an SCD or a sentence, ChatHA offers to visualize it in the corresponding information
system.

All in all, ChatHA can be used to query the research data repository for research

126

10.3. Research Data Repository Integration

tasks in the humanities. The output includes citations, so we not only reduce hal-
lucinations, but also give pointers for a more detailed look.

10.3. Research Data Repository Integration

An information system helps a user browse a corpus of documents. An embedded
agent in the system adds the possibility to interact with the corpus. Generally, there
are many different information system available and each system provides a different
set of features. Thus, for each type of document in a dataset some information
systems are good choices and others are not. For example, SIS works with any
corpus of PDF or plain text documents and especially well with law texts.

Often, datasets are stored in repositories. In the context of research, these are called
Research Data Repositories (RDRs). InvenioRDM1 is a software to deploy RDRs.
Similarly, Kaggle2 is a service providing an RDR by Google.

Let us assume a user needs to collect information about some topic. The user
will start with browsing through the datasets in an RDR. If a dataset seems to be
relevant for the topic, the user needs to download the dataset and view it locally on
the user’s computer. However, downloading a dataset just to take a first look adds
a lot of unnecessary overhead and raises the barriers to using a dataset. A solution
would be to integrate previews and information systems into the RDR, such that a
user is able to directly open the dataset in an information system supporting this
type of data.

This solution is similar to the ideas in [SM23, AMA+23]. Schiff and Möller [SM23]
describe the integration of a viewer including a processor of so-called critical editions
into InvenioRDM. In [AMA+23], Asselborn et al. describe a fine-tuning on demand
process. A user can request a LLM fine-tuned on a corpus from the RDR. The latter
may also be used to fine-tune LLMs for ChatHA right from the RDR.

In our case, we follow the goal to integrate SIS in an RDR like InvenioRDM, i.e, we
create SIS+RDR. Thereby, SIS+RDR should require only small changes to the RDR.
InvenioRDM only needs to display a button to open SIS beneath each supported
dataset and this button is just a hyperlink. Figure 10.2 shows a mockup of how
an “Open in Information System” button might look. This button would be shown
with any dataset of the RDR containing PDF documents, plain texts, or law texts
in XML format.

1https://inveniosoftware.org/products/rdm
2https://www.kaggle.com/datasets

127

https://inveniosoftware.org/products/rdm
https://www.kaggle.com/datasets

10. SCDs in Further Domains

Figure 10.2.: Mockup integrating an “Open in Information System” button
into an RDR. In this example, we added the button to https://www.fdr.

uni-hamburg.de/record/13423.

128

https://www.fdr.uni-hamburg.de/record/13423
https://www.fdr.uni-hamburg.de/record/13423

10.3. Research Data Repository Integration

Clicking the button opens the web application of SIS. In this process, the dataset
needs to be passed to SIS. SIS provides an import API for this purpose. The import
API is accessed by the user via a hyperlink created by the RDR. The hyperlink itself
contains a hyperlink to the dataset to import and optionally name, language, and
type of the dataset. Based on this information, SIS checks if the dataset is already
available. If it is not available, SIS runs USEM and LESS and estimates SCDs with
labels for the dataset as new corpus. When the SIS has finished the estimation, the
user can use SIS as described in Chapter 9.

To round off the import API, SIS also provides an export functionality of corpora
together with their SCDs. Hence, the user may use ReFrESH to improve the SCDs
of a corpus and export them afterwards. The export file can then be added to the
RDR and the RDR will again display an “Open in Information System” button.
The import and export functionalities enable collaboration between multiple users
of SIS+RDR: One user uploads an export with improved SCDs to the RDR and
another user imports this corpus to SIS and further improves it. Afterwards, the
other user may again upload the new improved version to the RDR and so on.

SIS+RDR lowers the barriers using SCDs and datasets in the RDR. A user only
needs a computer with a web browser. All the processing is done on the server-side
by the RDR and SIS. SCDs follow the idea of lean computing and are satisfied
with off-the-shelve hardware, i.e., it is possible to host SIS for multiple users with a
reasonable amount of computational resources.

In this second part, we described our information system providing the SCD-based
IR agent, its integration in an RDR, and ChatHA. Next, we conclude the dissertation
with a summary of contributions and an outlook.

129

10. SCDs in Further Domains

130

11. Conclusion

Natural language is the most intuitive way of human communication. The techniques
presented in this dissertation provide a next step toward text understanding in the
sense of NLP. We use the example of an IR agent and solve four problems composing
such an agent. Together the techniques build a cycle of estimating, enriching, using,
and improving SCDs associated with a corpus of text documents. Iteration after
iteration on the cycle, the SCDs improve incrementally toward the top of a spiral.

An SCD-based IR agent using the presented techniques is embedded in SIS. SIS
makes it easy for human users to use SCDs with their corpora and corpora available
in RDRs. Furthermore, SCDs and a subset of the techniques from this dissertation
are applied in ChatHA.

In the final two sections, we first summarize the contributions of the dissertation
and then present possible future work.

11.1. Summary of Contributions

We start the dissertation with a big picture providing an overview about SCDs. In
the first part, we then present five new techniques using SCDs. In the second part,
we describe applications using SCD and the previously presented techniques.

Part I Five chapters provide the theoretical foundation of the dissertation. We
start with USEM (Chapter 4) which estimates initial SCDs for any corpus. Thus,
our IR agent is able to work with user supplied corpora.

However, the newly estimated SCDs lack labels or descriptions. Hence, it is difficult
for human users to grasp the topic or concept of an SCD. Therefore, LESS (Chapter
5) estimates labels for the newly estimated SCDs.

Afterwards, the IR agent is ready to respond to queries. However, users may pro-
vide feedback about faulty sentences or associations of SCDs and sentences. The
agent then needs to incorporate the feedback. We have to distinguish between a
sentence of faulty content, which needs to be removed entirely form the corpus,
and a faulty association of sentences and SCD, where the association needs to be

131

11. Conclusion

📚

Corpus of Documents

USEM, LESS

t1
t2

⋮

tK

w1 w2
… wL

v1,1 v1,2 … v1,L

v2,1 v2,2
… v2,L

⋮ ⋮ ⋮ ⋮

vK,1 vK,2
… vK,L

SCDs g(𝒟)

Word Distribution

{vi,1, . . . , vi,L}

Referenced Sentences

{s1, . . . , sS}

Used to

Respond

to Queries

Feedback (FrESH & ReFrESH)

SCD
Add. Data

‣Label

‣…

t1
𝒞1

l1

SCD
 Add. Data

‣Label

‣…

t2
𝒞1

l2

SCD
 Add. Data

‣Label

‣…

tK
𝒞K

lK

Relations, e.g,

Complement

Query

Response

📚

𝒟

Figure 11.1.: Overview of an SCD with different relations and technique used
by the SCD-based IR agent. The underlined technique presented in this disser-
tation.

updated. To both cases, we present a technique to incorporate the feedback, i.e.,
FrESH (Chapter 6) to entirely remove faulty sentences and ReFrESH (Chapter 7)
to update associations and preserve relations.

Finally, we deep-dive into relations among SCDs (Chapter 8), i.e., inter-SCDs re-
lations between two SCDs. First, we define complementarity among SCDs. After-
wards, we use complementarity as an example relation and introduce cSCD matrices,
SEcM, and, cMPS2CD. These techniques are enhanced versions to work with SCDs
having inter-SCD relations.

Figure 11.1 shows an overview of the different techniques presented in Part I. Each
underlined term corresponds to one contribution of the dissertation. On the top left
side, USEM and LESS are shown. In the middle, multiple SCDs are depicted to-
gether with the SCD matrix and the intra-SCD relations to the referenced sentences
and matrix rows. Inter-SCD relations, e.g., complementarity, are also added to the
figure. On the bottom right side, the IR agent is shown together with an arrow
representing feedback, i.e., FrESH and ReFrESH.

Part II In two chapters, we describe three applications of SCDs. We start with
SIS (Chapter 9), an information system providing all the features of an SCD-based
IR agent via a web interface. We describe all required features and illustrate how

132

11.2. Outlook

such a system could look like. Additionally, we propose a way to connect SIS to an
RDR, i.e., SIS+RDR (Section 10.3).

It is not necessary that SCDs always provide the main model for an NLP task.
ChatHA (Section 10.2) is a chatbot based on an LLM and SCDs are used to post-
process the LLM’s raw output. During the post-processing, citations are added to
the answers and hallucinations are mitigated.

11.2. Outlook

Moving forward from this dissertation, there are many interesting topics for future
work. We consider the following three.

Feedback Planning and Reinforcement Learning FrESH and ReFrESH assume
that one sentence needs to be removed or reassigned to a different SCD. However,
human feedback is often not as clear. Additionally, there are other reasons why
something may be faulty from the point of a user, e.g., the response does not match
the information need or the query is worded incorrectly.

An agent dealing which such unclear feedback, first needs to classify the feedback
and then select an appropriate action to change its behavior. To get reliable evidence
before conducting an action, the agent should plan the next actions and value their
utility. All in all, such a strategy allows the agent to do reinforcement learning.
Based on human feedback and the other actions of the users, the agent is able to
update its models and plans to be more beneficial for users.

SCDs and Probabilistic Graphical Models The SCD matrix is a generative model
and each row represents a probability distribution of words. Additionally, each SCD
has references to multiple sentences in the corpus and relations including factors
to other SCDs. With these items we have the main parts needed to assemble a
probabilistic graphical model or factor graph. Automatically creating such a model
or graph from a corpus of text documents would be a significant step and important
connection of different fields of research.

Verifiability SCDs and the techniques used with SCDs are trackable, i.e., steps
can be retraced by a human. Additionally, the SCD matrix has a clearly defined
meaning. Hence, a response generated using SCDs can be explained by the model
and thus also be verified. This verifiability makes SCDs usable in areas where an
explanation or verification of responses is needed.

The use-case is similar to ChatHA: SCDs are not able to generate answers of natural
language, but can be used to post-process, i.e, validate, the raw LLMs’ outputs.

133

A. Appendix

135

Bibliography

[ABK+07] Auer, Sören ; Bizer, Christian ; Kobilarov, Georgi ; Lehmann,
Jens ; Cyganiak, Richard ; Ives, Zachary: DBpedia: A Nucleus for
a Web of Open Data. In: The Semantic Web. Berlin, Heidelberg :
Springer Berlin Heidelberg, 2007. – ISBN 978–3–540–76298–0, p. 722–
735

[AJPM15] Angeli, Gabor ; Johnson Premkumar, Melvin J. ; Manning,
Christopher D.: Leveraging Linguistic Structure For Open Domain
Information Extraction. In: Proceedings of the Association of Compu-
tational Linguistics (ACL) (2015), 344–354. https://doi.org/10.
3115/v1/P15-1034

[AMA+23] Asselborn, Thomas ; Melzer, Sylvia ; Aljoumani, Said ; Bender,
Magnus ; Marwitz, Florian A. ; Hirschler, Konrad ; Möller, Ralf:
Fine-tuning BERT Models on Demand for Information Systems Ex-
plained Using Training Data from Pre-modern Arabic. In: Proceedings
of the Workshop on Humanities-Centred Artificial Intelligence (CHAI
2023), CEUR Workshop Proceedings, 2023, 38–51

[Bau72] Baum, Leonard E.: An Inequality and Associated Maximization Tech-
nique in Statistical Estimation for Probabilistic Functions of Markov
Processes. In: Shisha, Oved (Ed.): Inequalities III: Proceedings of the
Third Symposium on Inequalities. University of California, Los Angeles
: Academic Press, 1972, p. 1–8

[BBG+21a] Bender, Magnus ; Braun, Tanya ; Gehrke, Marcel ; Kuhr, Fe-
lix ; Möller, Ralf ; Schiff, Simon: Identifying and Translat-
ing Subjective Content Descriptions Among Texts. In: International
Journal of Semantic Computing 15 (2021), no. 4, 461–485. https:

//dx.doi.org/10.1142/S1793351X21400122

[BBG+21b] Bender, Magnus ; Braun, Tanya ; Gehrke, Marcel ; Kuhr, Fe-
lix ; Möller, Ralf ; Schiff, Simon: Identifying Subjective Con-
tent Descriptions among Text. In: Proceedings of the 15th IEEE
International Conference on Semantic Computing (ICSC-21) (2021).
https://doi.org/10.1109/ICSC50631.2021.00008

137

https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.3115/v1/P15-1034
https://dx.doi.org/10.1142/S1793351X21400122
https://dx.doi.org/10.1142/S1793351X21400122
https://doi.org/10.1109/ICSC50631.2021.00008

Bibliography

[BKB22] Bender, Magnus ; Kuhr, Felix ; Braun, Tanya: To Extend or not
to Extend? Complementary Documents. In: 16th IEEE International
Conference on Semantic Computing, (ICSC 2022), Virtual, January
26-28 (2022), 17-24. https://doi.org/10.1109/ICSC52841.

2022.00011

[BL06] Blei, David M. ; Lafferty, John D.: Dynamic Topic Models. In:
Proceedings of the 23rd International Conference on Machine Learn-
ing (2006), p. 113–120. http://dx.doi.org/10.1145/1143844.
1143859. – DOI 10.1145/1143844.1143859. ISBN 1595933832

[BLB16] Bhatia, Shraey ; Lau, Jey H. ; Baldwin, Timothy: Automatic La-
belling of Topics with Neural Embeddings. In: Proceedings of COLING
2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Osaka, Japan : The COLING 2016 Organizing Com-
mittee, December 2016, 953–963

[BMR+20] Brown, Tom B. ; Mann, Benjamin ; Ryder, Nick ; Subbiah, Melanie
; Kaplan, Jared ; Dhariwal, Prafulla ; Neelakantan, Arvind ;
Shyam, Pranav ; Sastry, Girish ; Askell, Amanda ; Agarwal,
Sandhini ; Herbert-Voss, Ariel ; Krueger, Gretchen ; Henighan,
Tom ; Child, Rewon ; Ramesh, Aditya ; Ziegler, Daniel M. ; Wu,
Jeffrey ; Winter, Clemens ; Hesse, Christopher ; Chen, Mark ;
Sigler, Eric ; Litwin, Mateusz ; Gray, Scott ; Chess, Benjamin ;
Clark, Jack ; Berner, Christopher ; McCandlish, Sam ; Radford,
Alec ; Sutskever, Ilya ; Amodei, Dario: Language Models are Few-
Shot Learners. (2020). https://arxiv.org/abs/2005.14165

[BNJ03] Blei, David M. ; Ng, Andrew Y. ; Jordan, Michael I.: Latent Dirich-
let Allocation. In: Journal of Machine Learning Research 3 (2003),
993–1022. http://jmlr.org/papers/v3/blei03a.html

[BPSW70] Baum, Leonard E. ; Petrie, Ted ; Soules, George ; Weiss, Norman:
A maximization technique occurring in the statistical analysis of prob-
abilistic functions of Markov chains. In: The annals of mathematical
statistics 41 (1970), no. 1, p. 164–171

[CGR+17] Collarana, Diego ; Galkin, Mikhail ; Ribón, Ignacio T. ; Vidal,
Maria-Esther ; Lange, Christoph ; Auer, Sören: MINTE: Semanti-
cally integrating RDF graphs. In: Proceedings of the 7th International
Conference on Web Intelligence, Mining and Semantics, WIMS 2017,
Amantea, Italy, June 19-22, 2017, 2017, p. 22:1–22:11

[DCLT19] Devlin, Jacob ; Chang, Ming-Wei ; Lee, Kenton ; Toutanova,
Kristina: BERT: Pre-training of Deep Bidirectional Transformers

138

https://doi.org/10.1109/ICSC52841.2022.00011
https://doi.org/10.1109/ICSC52841.2022.00011
http://dx.doi.org/10.1145/1143844.1143859
http://dx.doi.org/10.1145/1143844.1143859
https://arxiv.org/abs/2005.14165
http://jmlr.org/papers/v3/blei03a.html

Bibliography

for Language Understanding. (2019). https://arxiv.org/abs/

1810.04805

[DLR77] Dempster, Arthur P. ; Laird, Nan M. ; Rubin, Donald B.: Maximum
likelihood from incomplete data via the EM algorithm. In: Journal of
the royal statistical society. Series B (methodological) (1977), p. 1–38

[EGGM18] Elnaggar, Ahmed ; Gebendorfer, Christoph ; Glaser, Ingo ;
Matthes, Florian: Multi-Task Deep Learning for Legal Document
Translation, Summarization and Multi-Label Classification. In: Pro-
ceedings of the 2018 Artificial Intelligence and Cloud Computing Con-
ference. New York, NY, USA : Association for Computing Machinery,
2018 (AICCC ’18). – ISBN 9781450366236, p. 9–15

[EKSX96] Ester, Martin ; Kriegel, Hans-Peter ; Sander, Jörg ; Xu, Xi-
aowei: A density-based algorithm for discovering clusters in large spatial
databases with noise. (1996), p. 226–231

[GGS+20] Gehman, Samuel ; Gururangan, Suchin ; Sap, Maarten ; Choi,
Yejin ; Smith, Noah A.: RealToxicityPrompts: Evaluating Neural
Toxic Degeneration in Language Models. In: Findings of the Association
for Computational Linguistics: EMNLP 2020. Online : Association for
Computational Linguistics, November 2020, p. 3356–3369

[GGVZ19] Ginart, Antonio A. ; Guan, Melody Y. ; Valiant, Gregory ; Zou,
James: Making AI Forget You: Data Deletion in Machine Learning.
2019

[HBT96] Hu, Jianying ; Brown, Michael K. ; Turin, William: HMM based
online handwriting recognition. In: IEEE Transactions on pattern anal-
ysis and machine intelligence 18 (1996), no. 10, p. 1039–1045

[HEGM13] Hindle, Abram ; Ernst, Neil A. ; Godfrey, Michael W. ; My-
lopoulos, John: Automated topic naming. In: Empirical Software
Engineering 18 (2013), no. 6, p. 1125–1155

[Hel09] Hellinger, Ernst: Neue Begründung der Theorie quadratischer For-
men von unendlichvielen Veränderlichen. In: Journal für die reine und
angewandte Mathematik (1909), p. 210–271

[HKH+01] Hatzivassiloglou, Vasileios ; Klavans, Judith L. ; Holcombe,
Melissa L. ; Barzilay, Regina ; Kan, Min-Yen ; McKeown, Kath-
leen: SimFinder: A flexible clustering tool for summarization. (2001)

[HS97] Hochreiter, Sepp ; Schmidhuber, Jürgen: Long Short-Term Mem-
ory. In: Neural Comput. 9 (1997), November, no. 8, 1735–1780. https:
//doi.org/10.1162/neco.1997.9.8.1735. – ISSN 0899–7667

139

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Bibliography

[HSE11] Hadano, Masashi ; Shimada, Kazutaka ; Endo, Tsutomu: Aspect
Identification of Sentiment Sentences Using A Clustering Algorithm. In:
Procedia - Social and Behavioral Sciences 27 (2011), 22-31. https://
doi.org/10.1016/j.sbspro.2011.10.579. – ISSN 1877–0428.
– Computational Linguistics and Related Fields

[ISCZ21] Izzo, Zachary ; Smart, Mary A. ; Chaudhuri, Kamalika ; Zou,
James Y.: Approximate Data Deletion from Machine Learning Models.
In: International Conference on Artificial Intelligence and Statistics,
2021

[KBBM19] Kuhr, Felix ; Braun, Tanya ; Bender, Magnus ; Möller, Ralf:
To Extend or not to Extend? Context-specific Corpus Enrichment.
In: Proceedings of AI 2019: Advances in Artificial Intelligence (2019),
357–368. https://doi.org/10.1007/978-3-030-35288-2_

29. ISBN 978–3–030–35288–2

[KBBM20] Kuhr, Felix ; Bender, Magnus ; Braun, Tanya ; Möller, Ralf:
Augmenting and Automating Corpus Enrichment. In: Int. J. Semantic
Computing 14 (2020), no. 2, 173–197. https://doi.org/10.1142/
S1793351X20400061

[KBBM21] Kuhr, Felix ; Bender, Magnus ; Braun, Tanya ; Möller, Ralf:
Context-specific Adaptation of Subjective Content Descriptions. In:
15th IEEE International Conference on Semantic Computing, (ICSC
2021), Laguna Hills, CA, USA, January 27-29 (2021), 134–139.
https://dx.doi.org/10.1109/ICSC50631.2021.00032

[KR15] Kavyasrujana, D. ; Rao, B. C.: Hierarchical Clustering for Sentence
Extraction Using Cosine Similarity Measure. In: Satapathy, Suresh C.
(Ed.) ; Govardhan, A. (Ed.) ; Raju, K. S. (Ed.) ; Mandal, J. K.
(Ed.): Emerging ICT for Bridging the Future - Proceedings of the 49th
Annual Convention of the Computer Society of India (CSI) Volume 1.
Cham : Springer International Publishing, 2015, p. 185–191

[Kuhr22] Kuhr, Felix: Context is the Key: Context-aware Corpus Anno-
tation using Subjective Content Descriptions, University of Lübeck,
Diss., 2022. https://nbn-resolving.de/urn:nbn:de:gbv:

841-2022060962

[Kum19] Kummerfeld, Jonathan K.: SLATE: A Super-Lightweight Annota-
tion Tool for Experts. In: arXiv preprint arXiv:1907.08236 (2019)

[KWM19] Kuhr, Felix ; Witten, Bjarne ; Möller, Ralf: Corpus-Driven Anno-
tation Enrichment. In: 13th IEEE International Conference on Seman-
tic Computing, (ICSC 2019), Newport Beach, CA, USA, January 30

140

https://doi.org/10.1016/j.sbspro.2011.10.579
https://doi.org/10.1016/j.sbspro.2011.10.579
https://doi.org/10.1007/978-3-030-35288-2_29
https://doi.org/10.1007/978-3-030-35288-2_29
https://doi.org/10.1142/S1793351X20400061
https://doi.org/10.1142/S1793351X20400061
https://dx.doi.org/10.1109/ICSC50631.2021.00032
https://nbn-resolving.de/urn:nbn:de:gbv:841-2022060962
https://nbn-resolving.de/urn:nbn:de:gbv:841-2022060962

Bibliography

- February 1, (2019), p. 138–141. http://dx.doi.org/10.1109/
ICOSC.2019.8665501. – DOI 10.1109/ICOSC.2019.8665501. – ISSN
2325–6516

[LGNB11] Lau, Jey H. ; Grieser, Karl ; Newman, David ; Baldwin, Timo-
thy: Automatic Labelling of Topic Models. In: Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Hu-
man Language Technologies. Portland, Oregon, USA : Association for
Computational Linguistics, June 2011, 1536–1545

[LKM16] Lange, Mona ; Kuhr, Felix ; Möller, Ralf: Using a Deep Un-
derstanding of Network Activities for Workflow Mining. In: KI 2016:
Advances in Artificial Intelligence - 39th Annual German Conference
on AI, Klagenfurt, Austria, September 26-30 Vol. 9904, Springer, 2016
(Lecture Notes in Computer Science), p. 177–184

[Llo82] Lloyd, S.: Least squares quantization in PCM. In: IEEE
Transactions on Information Theory 28 (1982), no. 2, p. 129–137.
http://dx.doi.org/10.1109/TIT.1982.1056489. – DOI
10.1109/TIT.1982.1056489

[LPP+20] Lewis, Patrick ; Perez, Ethan ; Piktus, Aleksandra ; Petroni,
Fabio ; Karpukhin, Vladimir ; Goyal, Naman ; Küttler, Heinrich
; Lewis, Mike ; Yih, Wen-tau ; Rocktäschel, Tim et al.: Retrieval-
Augmented Generation for Knowledge-Intensive NLP Tasks. In: Ad-
vances in Neural Information Processing Systems 33 (2020), p. 9459–
9474

[LZ19] Liao, Xiaofeng ; Zhao, Zhiming: Unsupervised Approaches for Textual
Semantic Annotation, A Survey. In: ACM Computing Surveys (CSUR)
52 (2019), no. 4, p. 1–45

[Mav69] Maverick, George V.: Computational Analysis of Present-Day Amer-
ican English. Henry Kučera, W. Nelson Francis. In: International
Journal of American Linguistics 35 (1969), no. 1, 71-75. https:

//doi.org/10.1086/465045

[MC17] Moratanch, N. ; Chitrakala, S.: A survey on extractive text sum-
marization. In: 2017 International Conference on Computer, Commu-
nication and Signal Processing (ICCCSP), IEEE, 2017, p. 1–6

[MCCD13] Mikolov, Tomas ; Chen, Kai ; Corrado, Greg ; Dean, Jeffrey:
Efficient Estimation of Word Representations in Vector Space. 2013

[Mil95] Miller, George A.: WordNet: A lexical database for English. In:
Communications of the ACM 38 (1995), no. 11, p. 39–41

141

http://dx.doi.org/10.1109/ICOSC.2019.8665501
http://dx.doi.org/10.1109/ICOSC.2019.8665501
http://dx.doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1086/465045
https://doi.org/10.1086/465045

Bibliography

[NKAJ59] Newcombe, Howard B. ; Kennedy, James M. ; Axford, SJ ; James,
Allison P.: Automatic linkage of vital records. In: Science 130 (1959),
no. 3381, p. 954–959

[NN15] Nguyen, Nguyet ; Nguyen, Dung: Hidden Markov model for stock
selection. In: Risks 3 (2015), no. 4, p. 455–473

[PM+00] Pelleg, Dan ; Moore, Andrew W. et al.: X-means: Extending k-
means with efficient estimation of the number of clusters. In: Icml
Vol. 1, 2000, p. 727–734

[Ram03] Ramos, Juan E.: Using TF-IDF to Determine Word Relevance in
Document Queries. (2003)

[RBH15] Röder, Michael ; Both, Andreas ; Hinneburg, Alexander: Exploring
the Space of Topic Coherence Measures. In: Proceedings of the Eighth
ACM International Conference on Web Search and Data Mining. New
York, NY, USA : Association for Computing Machinery, 2015 (WSDM
’15). – ISBN 9781450333177, p. 399–408

[RHW86] Rumelhart, D. ; Hinton, Geoffrey E. ; Williams, R. J.: Learning
representations by back-propagating errors. In: Nature 323 (1986), 533-
536. https://doi.org/10.1038/323533a0

[RJ86] Rabiner, Lawrence R. ; Juang, BH: A tutorial on hidden Markov
models. In: IEEE ASSP Magazine 3 (1986), no. 1, p. 4–16

[RN18] Radford, Alec ; Narasimhan, Karthik: Improving Language Un-
derstanding by Generative Pre-Training. (2018). https://api.

semanticscholar.org/CorpusID:49313245

[RN21] Russell, Stuart ; Norvig, Peter: Artificial Intelligence, Global
Edition – A Modern Approach. Pearson Deutschland, 2021. –
36–62 p. https://elibrary.pearson.de/book/99.150005/

9781292401171. – ISBN 978–1–292–40117–1

[Ros58] Rosenblatt, Frank: The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. In: Psychological review
65 (1958), no. 6, p. 386

[RWC+19] Radford, Alec ; Wu, Jeff ; Child, Rewon ; Luan, David ; Amodei,
Dario ; Sutskever, Ilya: Language Models are Unsupervised Mul-
titask Learners. (2019). https://api.semanticscholar.org/

CorpusID:160025533

142

https://doi.org/10.1038/323533a0
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://elibrary.pearson.de/book/99.150005/9781292401171
https://elibrary.pearson.de/book/99.150005/9781292401171
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533

Bibliography

[RZGSS04] Rosen-Zvi, Michal ; Griffiths, Thomas ; Steyvers, Mark ; Smyth,
Padhraic: The Author-Topic Model for Authors and Documents. In:
Proceedings of the 20th Conference on Uncertainty in Artificial Intelli-
gence (2004), p. 487–494. ISBN 0974903906

[SBDS14] Sabou, Marta ; Bontcheva, Kalina ; Derczynski, Leon ; Scharl,
Arno: Corpus Annotation through Crowdsourcing: Towards Best
Practice Guidelines. In: Proceedings of the 9th International Con-
ference on Language Resources and Evaluation (LREC’14) (2014),
01. http://www.lrec-conf.org/proceedings/lrec2014/

pdf/497_Paper.pdf

[SBK05] Sang, Tian ; Beame, Paul ; Kautz, Henry A.: Performing Bayesian
Inference by Weighted Model Counting. In: AAAI Conference on Ar-
tificial Intelligence, 2005

[SBM23] Sievers, Thomas ; Bender, Magnus ; Möller, Ralf: Connecting
AI Technologies as Online Services to a Humanoid Service Robot. In:
15th International Conference on Computer and Automation Engineer-
ing (ICCAE), IEEE, 2023, 431-435

[SGM19] Strubell, Emma ; Ganesh, Ananya ; McCallum, Andrew: Energy
and Policy Considerations for Deep Learning in NLP. In: Proceedings
of the 57th Annual Meeting of the Association for Computational Lin-
guistics. Florence, Italy : Association for Computational Linguistics,
July 2019, p. 3645–3650

[SJ72] Sparck Jones, Karen: A Statistical Interpretation of Term Specificity
and its Application in Retrieval. In: Journal of Documentation 28
(1972), no. 1, p. 11–21

[SK17] Shetty, Krithi ; Kallimani, Jagadish S.: Automatic extractive text
summarization using K-means clustering. (2017). https://doi.

org/10.1109/ICEECCOT.2017.8284627

[SKSM08] Srivastava, Abhinav ; Kundu, Amlan ; Sural, Shamik ; Majum-
dar, Arun: Credit card fraud detection using hidden Markov model.
In: IEEE Transactions on dependable and secure computing 5 (2008),
no. 1, p. 37–48

[SKW07] Suchanek, Fabian M. ; Kasneci, Gjergji ; Weikum, Gerhard:
YAGO: A core of semantic knowledge. In: Proceedings of the 16th Inter-
national Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, 2007, p. 697–706

143

http://www.lrec-conf.org/proceedings/lrec2014/pdf/497_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/497_Paper.pdf
https://doi.org/10.1109/ICEECCOT.2017.8284627
https://doi.org/10.1109/ICEECCOT.2017.8284627

Bibliography

[SM23] Schiff, Simon ; Möller, Ralf: Persistent Data, Sustainable Informa-
tion. In: Proceedings of the Workshop on Humanities-Centred Artificial
Intelligence (CHAI 2023), CEUR Workshop Proceedings, 2023, 5–14

[SN08] Seno, Eloize Rossi M. ; Nunes, Maria das Graças Volpe: Some Ex-
periments on Clustering Similar Sentences of Texts in Portuguese. In:
Teixeira, António (Ed.) ; Lima, Vera Lúcia S. (Ed.) ; Oliveira,
Luís C. (Ed.) ; Quaresma, Paulo (Ed.): Computational Processing of
the Portuguese Language. Berlin, Heidelberg : Springer Berlin Heidel-
berg, 2008, p. 133–142

[TRH16] Towne, W. B. ; Rosé, Carolyn P. ; Herbsleb, James D.: Measuring
Similarity Similarly: LDA and Human Perception. In: ACM Trans.
Intell. Syst. Technol. 8 (2016), no. 1, 7:1–7:28. https://doi.org/

10.1145/2890510

[VIN15] Vijayarani, S. ; Ilamathi, J. ; Nithya, S.: Preprocessing Techniques
for Text Mining - An Overview. In: International Journal of Computer
Science & Communication Networks 5 (2015), p. 7–16

[Vit67] Viterbi, A.: Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm. In: IEEE Transactions on Infor-
mation Theory 13 (1967), no. 2, 260-269. https://doi.org/10.

1109/TIT.1967.1054010

[VSP+17] Vaswani, Ashish ; Shazeer, Noam ; Parmar, Niki ; Uszkor-
eit, Jakob ; Jones, Llion ; Gomez, Aidan N. ; Kaiser, Lukasz ;
Polosukhin, Illia: Attention Is All You Need. (2017). https:

//arxiv.org/abs/1706.03762

[YCZS14] Yang, Libin ; Cai, Xiaoyan ; Zhang, Yang ; Shi, Peng: Enhancing
sentence-level clustering with ranking-based clustering framework for
theme-based summarization. In: Information Sciences 260 (2014), 37-
50. https://doi.org/10.1016/j.ins.2013.11.026. – ISSN
0020–0255

[YYH23] Yang, Hui ; Yue, Sifu ; He, Yunzhong: Auto-GPT for Online
Decision Making: Benchmarks and Additional Opinions. https:

//arxiv.org/pdf/2306.02224.pdf. Version: 2023

[YZG+20] Yang, Ziyi ; Zhu, Chenguang ; Gmyr, Robert ; Zeng, Michael ;
Huang, Xuedong ; Darve, Eric: TED: A Pretrained Unsupervised
Summarization Model with Theme Modeling and Denoising. In: Find-
ings of the Association for Computational Linguistics: EMNLP 2020.
Online : Association for Computational Linguistics, November 2020, p.
1865–1874

144

https://doi.org/10.1145/2890510
https://doi.org/10.1145/2890510
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1016/j.ins.2013.11.026
https://arxiv.org/pdf/2306.02224.pdf
https://arxiv.org/pdf/2306.02224.pdf

Bibliography

[YZLL18] Yang, Jie ; Zhang, Yue ; Li, Linwei ; Li, Xingxuan: YEDDA: A
Lightweight Collaborative Text Span Annotation Tool. In: Proceedings
of ACL 2018, Melbourne, Australia, July 15-20, 2018, System Demon-
strations, 2018, p. 31–36

[Zha04] Zhang, Yingjian: Prediction of financial time series with Hidden
Markov Models, Applied Sciences: School of Computing Science, Diss.,
2004

[ZLWZ18] Zhang, Xingxing ; Lapata, Mirella ; Wei, Furu ; Zhou, Ming: Neu-
ral Latent Extractive Document Summarization. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Process-
ing. Brussels, Belgium : Association for Computational Linguistics,
October-November 2018, p. 779–784

145

Publications of Magnus Bender

2024

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke Enhance-
ment of Subjective Content Descriptions by using Human Feed-
back to be published in International Journal of Semantic Computing,
2024 https://arxiv.org/abs/2405.15786

• Magnus Bender Automate Text Processing for Schematically An-
alyzing Legal Texts to be published in Proceedings of the Humanities-
Centred AI (CHAI) Workshop at KI2024, 47th German Conference on
Artificial Intelligence, 2024
(Slides: https://dx.doi.org/10.25592/uhhfdm.16138)

• Hagen Peukert, Lucas F. Voges, Thomas Asselborn, Magnus Bender, Ralf
Möller, Sylvia Melzer Humanities in the Center of Data Usability:
Data Visualization in Institutional Research Repositories to be
published in Proceedings of the Humanities-Centred AI (CHAI) Workshop
at KI2024, 47th German Conference on Artificial Intelligence, 2024
(Slides: https://dx.doi.org/10.25592/uhhfdm.16138)

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: ReFrESH
– Relation-preserving Feedback-reliant Enhancement of Subjec-
tive Content Descriptions in 18th IEEE International Conference on
Semantic Computing (ICSC 2024) – Best Paper Award
https://dx.doi.org/10.1109/ICSC59802.2024.00010

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: Unsuper-
vised Estimation of Subjective Content Descriptions in an Infor-
mation System in International Journal of Semantic Computing, 2024
https://dx.doi.org/10.1142/S1793351X24410034

146

https://arxiv.org/abs/2405.15786
https://dx.doi.org/10.25592/uhhfdm.16138
https://dx.doi.org/10.25592/uhhfdm.16138
https://dx.doi.org/10.1109/ICSC59802.2024.00010
https://dx.doi.org/10.1142/S1793351X24410034

Publications

2023

• Magnus Bender, Kira Schwandt, Ralf Möller, Marcel Gehrke: FrESH –
Feedback-reliant Enhancement of Subjective Content Descrip-
tions by Humans in Proceedings of the Humanities-Centred AI (CHAI)
Workshop at KI2023, 46th German Conference on Artificial Intelligence,
2023
https://ceur-ws.org/Vol-3580/paper3.pdf (Slides: https:

//dx.doi.org/10.25592/uhhfdm.13423)

• Thomas Asselborn, Sylvia Melzer, Said Aljoumani, Magnus Bender, Flo-
rian Andreas Marwitz, Konrad Hirschler and Ralf Möller: Fine-tuning
BERT Models on Demand for Information Systems Explained
Using Training Data from Pre-modern Arabic in Proceedings of the
Humanities-Centred AI (CHAI) Workshop at KI2023, 46th German Con-
ference on Artificial Intelligence, 2023
https://ceur-ws.org/Vol-3580/paper5.pdf (Slides: https:

//dx.doi.org/10.25592/uhhfdm.13423)

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: LESS is
More: LEan Computing for Selective Summaries in KI 2023:
Advances in Artificial Intelligence. Lecture Notes in Computer Science,
Springer
https://dx.doi.org/10.1007/978-3-031-42608-7_1

• Thomas Sievers, Magnus Bender, Ralf Möller: Connecting AI Tech-
nologies as Online Services to a Humanoid Service Robot in 15th
International Conference on Computer and Automation Engineering (IC-
CAE 2023)
http://dx.doi.org/10.1109/ICCAE56788.2023.10111181

• Magnus Bender, Tanya Braun, Ralf Möller, Marcel Gehrke: Unsuper-
vised Estimation of Subjective Content Descriptions in 17th IEEE
International Conference on Semantic Computing (ICSC 2023)
https://dx.doi.org/10.1109/ICSC56153.2023.00052

2022

• Simon Schiff, Magnus Bender, Ralf Möller: Embodiment of an Agent
by a Pepper Robot for Explaining Retrieval Results in Proceedings
of the Humanities-Centred AI (CHAI) Workshop at KI2022, 45th German
Conference on Artificial Intelligence, 2022
https://ceur-ws.org/Vol-3301/paper4.pdf (Slides: https:

//dx.doi.org/10.25592/uhhfdm.10769)

147

https://ceur-ws.org/Vol-3580/paper3.pdf
https://dx.doi.org/10.25592/uhhfdm.13423
https://dx.doi.org/10.25592/uhhfdm.13423
https://ceur-ws.org/Vol-3580/paper5.pdf
https://dx.doi.org/10.25592/uhhfdm.13423
https://dx.doi.org/10.25592/uhhfdm.13423
https://dx.doi.org/10.1007/978-3-031-42608-7_1
http://dx.doi.org/10.1109/ICCAE56788.2023.10111181
https://dx.doi.org/10.1109/ICSC56153.2023.00052
https://ceur-ws.org/Vol-3301/paper4.pdf
https://dx.doi.org/10.25592/uhhfdm.10769
https://dx.doi.org/10.25592/uhhfdm.10769

Publications

• Magnus Bender, Felix Kuhr, Tanya Braun: To Extend or not to Ex-
tend? Enriching a Corpus with Complementary and Related
Documents in International Journal of Semantic Computing, 2022
https://dx.doi.org/10.1142/S1793351X2240013X

• Magnus Bender, Felix Kuhr, Tanya Braun: To Extend or not to Ex-
tend? Complementary Documents in 16th IEEE International Con-
ference on Semantic Computing (ICSC 2022)
https://dx.doi.org/10.1109/ICSC52841.2022.00011

• Magnus Bender, Felix Kuhr, Tanya Braun, Ralf Möller: Estimating
Context-Specific Subjective Content Descriptions using BERT
in 16th IEEE International Conference on Semantic Computing (ICSC
2022)
https://dx.doi.org/10.1109/ICSC52841.2022.00034

2021

• Magnus Bender, Tanya Braun, Marcel Gehrke, Felix Kuhr, Ralf Möller,
Simon Schiff: Identifying and Translating Subjective Content De-
scriptions Among Texts in International Journal of Semantic Comput-
ing, 2021
https://dx.doi.org/10.1142/S1793351X21400122

• Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Möller: Context-specific
Adaptation of Subjective Content Descriptions in 15th IEEE In-
ternational Conference on Semantic Computing, (ICSC 2021)
https://dx.doi.org/10.1109/ICSC50631.2021.00032

• Magnus Bender, Tanya Braun, Marcel Gehrke, Felix Kuhr, Ralf Möller,
Simon Schiff: Identifying Subjective Content Descriptions Among
Texts in 15th IEEE International Conference on Semantic Computing
(ICSC 2021)
https://dx.doi.org/10.1109/ICSC50631.2021.00008

2020

• Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Möller: Augmenting
and Automating Corpus Enrichment in International Journal of Se-
mantic Computing, 2020
https://dx.doi.org/10.1142/S1793351X20400061

• Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Möller: Maintaining
Topic Models for Growing Corpora in 14th IEEE International Con-
ference on Semantic Computing (ICSC 2020)
https://dx.doi.org/10.1109/ICSC.2020.00087

148

https://dx.doi.org/10.1142/S1793351X2240013X
https://dx.doi.org/10.1109/ICSC52841.2022.00011
https://dx.doi.org/10.1109/ICSC52841.2022.00034
https://dx.doi.org/10.1142/S1793351X21400122
https://dx.doi.org/10.1109/ICSC50631.2021.00032
https://dx.doi.org/10.1109/ICSC50631.2021.00008
https://dx.doi.org/10.1142/S1793351X20400061
https://dx.doi.org/10.1109/ICSC.2020.00087

Publications

2019

• Felix Kuhr, Tanya Braun, Magnus Bender, Ralf Möller: To Extend or
not to Extend? Context-specific Corpus Enrichment in Proceed-
ings of AI 2019: Advances in Artificial Intelligence, 2019, Springer
https://dx.doi.org/10.1007/978-3-030-35288-2_29

149

https://dx.doi.org/10.1007/978-3-030-35288-2_29

Curriculum Vitae

Personal Information

Magnus Bender

Professional Experience

Since April 2024 Research Associate at the Institute of Humanities-
Centered Artificial Intelligence (CHAI), Univer-
sität Hamburg

March 2021 to March 2024 Research Assistant at the Institute of Information
Systems, University of Lübeck

Education

September 2021 M.Sc. in Computer Science, University of Lübeck

October 2019 B.Sc. in Computer Science, University of Lübeck

July 2016 General Qualification for University Entrance
(Abitur), Ernestinenschule Lübeck

On the Web

DBLP: https://dblp.org/pid/253/6981.html

Scholar: https://scholar.google.com/citations?user=A_HVBuMAAAAJ

ORCID: https://orcid.org/0000-0002-1854-225X

150

https://dblp.org/pid/253/6981.html
https://scholar.google.com/citations?user=A_HVBuMAAAAJ
https://orcid.org/0000-0002-1854-225X

	Abstract
	Kurzfassung
	Acknowledgements
	Table of Contents
	List of Variables, Notations, and Abbreviations
	Introduction
	Related Work
	Overview of Contributions
	Structure

	Preliminaries
	Notations for Corpora
	Natural Language Processing Techniques
	Intelligent Agents

	The Universe of Subjective Content Descriptions
	Subjective Content Descriptions
	SCDs in an Information Retrieval Agent
	Detailed Contributions

	Theoretical Foundation
	USEM – UnSupervised Estimation of SCDs
	Introduction
	Unsupervised Estimation of SCDs
	Evaluation
	Related Work
	Interim Conclusion

	LESS is More – Label Estimation for SCDs without Supervision
	Introduction
	Computing Labels for SCDs
	Evaluation
	Interim Conclusion

	FrESH – Feedback-reliant Enhancement of SCDs by Humans
	Introduction
	Incorporate Feedback
	Evaluation
	Interim Conclusion

	ReFrESH – Relation-preserving Feedback-reliant Enhancement of SCDs
	Introduction
	Related Work
	Relation-preserving Updates on SCD Matrices
	Evaluation
	Interim Conclusion

	Complementarity as an Inter-SCD Relation
	Introduction
	Related Work
	Preliminaries
	Identifying Complementary Documents
	Document Classification with Complementarity and Similarity
	Evaluation
	Interim Conclusion

	Application
	Composing an Information System using SCDs
	Introduction
	Basic Structure
	Working with Corpora
	Working with SCDs

	SCDs in Further Domains
	Introduction
	Humanities Aligned Chatbot
	Research Data Repository Integration

	Conclusion
	Summary of Contributions
	Outlook

	Appendix
	Bibliography
	Publications
	Curriculum Vitae

