
AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

TUTORIAL 4:
MORE PYTHON AND CODING
Creating Business Value with Generative AI
Fall 2025

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PLAN FOR TODAY

2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PLAN FOR TODAY
• This slides provide also some type of Python Cheatsheet

• Available online in Brightspace

2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PLAN FOR TODAY
• This slides provide also some type of Python Cheatsheet

• Available online in Brightspace

1. Recap of some Python basics

2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PLAN FOR TODAY
• This slides provide also some type of Python Cheatsheet

• Available online in Brightspace

1. Recap of some Python basics

2. Python coding in a notebook on uCloud

i. Start together doing live-coding

2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PLAN FOR TODAY
• This slides provide also some type of Python Cheatsheet

• Available online in Brightspace

1. Recap of some Python basics

2. Python coding in a notebook on uCloud

i. Start together doing live-coding

ii. Solve individually and using ChatGPT

2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PLAN FOR TODAY
• This slides provide also some type of Python Cheatsheet

• Available online in Brightspace

1. Recap of some Python basics

2. Python coding in a notebook on uCloud

i. Start together doing live-coding

ii. Solve individually and using ChatGPT

iii. Solve similar problem and fix existing code

2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PLAN FOR TODAY
• This slides provide also some type of Python Cheatsheet

• Available online in Brightspace

1. Recap of some Python basics

2. Python coding in a notebook on uCloud

i. Start together doing live-coding

ii. Solve individually and using ChatGPT

iii. Solve similar problem and fix existing code

➡Possible to do the tasks in different levels of complexity

2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PLAN FOR TODAY
• This slides provide also some type of Python Cheatsheet

• Available online in Brightspace

1. Recap of some Python basics

2. Python coding in a notebook on uCloud

i. Start together doing live-coding

ii. Solve individually and using ChatGPT

iii. Solve similar problem and fix existing code

➡Possible to do the tasks in different levels of complexity

3. Prepare for the next step: Use OpenAI API for analyzing and retrieving data

2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

TABLE OF CONTENTS

3

• If-ElIf-Else

• Operators

• Loops: For and While

• Data Types

- Strings

- Lists

- Dictionaries

- Tuples

• Function Definitions

• Helpful Functions

• Example Read CSV

• JavaScript Object Notation (JSON)

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

PYTHON BASICS

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

duration = 60

if duration < 0:
 print("Time can not be negative!")
elif duration == 60:
 print("Exactly one minute.")
elif duration > 60:
 print("More than one minute.")
else:
 print("It took "+ str(duration) +"seconds.")

message = "That was " + ("fast" if duration < 30 else "too slow") + "!"
print(message)

IF-ELIF-ELSE, PART I

5

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

duration = 60

if duration < 0:
 print("Time can not be negative!")
elif duration == 60:
 print("Exactly one minute.")
elif duration > 60:
 print("More than one minute.")
else:
 print("It took "+ str(duration) +"seconds.")

message = "That was " + ("fast" if duration < 30 else "too slow") + "!"
print(message)

IF-ELIF-ELSE, PART I

5

Exactly one minute.

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

duration = 60

if duration < 0:
 print("Time can not be negative!")
elif duration == 60:
 print("Exactly one minute.")
elif duration > 60:
 print("More than one minute.")
else:
 print("It took "+ str(duration) +"seconds.")

message = "That was " + ("fast" if duration < 30 else "too slow") + "!"
print(message)

IF-ELIF-ELSE, PART I

5

Exactly one minute.

That was too slow!

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

duration = 29

if duration < 0:
 print("Time can not be negative!")
elif duration == 60:
 print("Exactly one minute.")
elif duration > 60:
 print("More than one minute.")
else:
 print("It took "+ str(duration) +"seconds.")

message = "That was " + ("fast" if duration < 30 else "too slow") + "!"
print(message)

IF-ELIF-ELSE, PART I

6

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

duration = 29

if duration < 0:
 print("Time can not be negative!")
elif duration == 60:
 print("Exactly one minute.")
elif duration > 60:
 print("More than one minute.")
else:
 print("It took "+ str(duration) +"seconds.")

message = "That was " + ("fast" if duration < 30 else "too slow") + "!"
print(message)

IF-ELIF-ELSE, PART I

6

It took 29 seconds.

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

duration = 29

if duration < 0:
 print("Time can not be negative!")
elif duration == 60:
 print("Exactly one minute.")
elif duration > 60:
 print("More than one minute.")
else:
 print("It took "+ str(duration) +"seconds.")

message = "That was " + ("fast" if duration < 30 else "too slow") + "!"
print(message)

IF-ELIF-ELSE, PART I

6

It took 29 seconds.

That was fast!

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

OPERATORS

7

Comparision

== Equality

> and < Greater than and less than

>= and <= Greater than equal and less than equal

Logical

not Negation

and And

or Or

Mathematical

* and ** Multiplication and exponentiation

/ and // Division and integer division

+ and - Addition and subtraction

% Modulo/remainder

in Checking for inclusion in tuples, strings, sets

Assign

= Assignment

+= Addition and assignment

-= Subtraction and assignment

/= Division and assignment

• This is only a small
selection.

• Operators are
defined for the
respective data
types.

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LOOPS: FOR AND WHILE

8

values = [1, 2, 3, 4]
print(values)

for v in values:
 print("v is", v)

values2 = [v*2 for v in values]
print(values2)

while len(values2) > 0:
 print(values2.pop())

print(values2)

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LOOPS: FOR AND WHILE

8

values = [1, 2, 3, 4]
print(values)

for v in values:
 print("v is", v)

values2 = [v*2 for v in values]
print(values2)

while len(values2) > 0:
 print(values2.pop())

print(values2)

[1, 2, 3, 4]

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LOOPS: FOR AND WHILE

8

values = [1, 2, 3, 4]
print(values)

for v in values:
 print("v is", v)

values2 = [v*2 for v in values]
print(values2)

while len(values2) > 0:
 print(values2.pop())

print(values2)

[1, 2, 3, 4]

v is 1
v is 2
v is 3
v is 4

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LOOPS: FOR AND WHILE

8

values = [1, 2, 3, 4]
print(values)

for v in values:
 print("v is", v)

values2 = [v*2 for v in values]
print(values2)

while len(values2) > 0:
 print(values2.pop())

print(values2)

[1, 2, 3, 4]

v is 1
v is 2
v is 3
v is 4

[2, 4, 6, 8]

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LOOPS: FOR AND WHILE

8

values = [1, 2, 3, 4]
print(values)

for v in values:
 print("v is", v)

values2 = [v*2 for v in values]
print(values2)

while len(values2) > 0:
 print(values2.pop())

print(values2)

[1, 2, 3, 4]

v is 1
v is 2
v is 3
v is 4

[2, 4, 6, 8]

8
6
4
2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LOOPS: FOR AND WHILE

8

values = [1, 2, 3, 4]
print(values)

for v in values:
 print("v is", v)

values2 = [v*2 for v in values]
print(values2)

while len(values2) > 0:
 print(values2.pop())

print(values2)

[1, 2, 3, 4]

v is 1
v is 2
v is 3
v is 4

[2, 4, 6, 8]

[]

8
6
4
2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DATA TYPES

9

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DATA TYPES

9

True, False, None• True, False and Null

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DATA TYPES

9

True, False, None

12, 12.5, 12e3, -20

• True, False and Null

• Numbers (int and float)

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DATA TYPES

9

True, False, None

12, 12.5, 12e3, -20

"Hello World", 'Hello World’

• True, False and Null

• Numbers (int and float)

• Strings

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DATA TYPES

9

True, False, None

12, 12.5, 12e3, -20

"Hello World", 'Hello World’

(1, 2, 3, 4), ("A", 2, "C", None), tuple("ABCD")

• True, False and Null

• Numbers (int and float)

• Strings

• Tuples

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DATA TYPES

9

True, False, None

12, 12.5, 12e3, -20

"Hello World", 'Hello World’

(1, 2, 3, 4), ("A", 2, "C", None), tuple("ABCD")

[1, 2, 3, 4], ["A", 2, "C", None], list((1, 2, 3))

• True, False and Null

• Numbers (int and float)

• Strings

• Tuples

• Lists

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DATA TYPES

9

True, False, None

12, 12.5, 12e3, -20

"Hello World", 'Hello World’

(1, 2, 3, 4), ("A", 2, "C", None), tuple("ABCD")

[1, 2, 3, 4], ["A", 2, "C", None], list((1, 2, 3))

{"a", "b"}, {"a", "a", "b"}, set(("a", "b", "b"))

• True, False and Null

• Numbers (int and float)

• Strings

• Tuples

• Lists

• Sets

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DATA TYPES

9

True, False, None

12, 12.5, 12e3, -20

"Hello World", 'Hello World’

(1, 2, 3, 4), ("A", 2, "C", None), tuple("ABCD")

[1, 2, 3, 4], ["A", 2, "C", None], list((1, 2, 3))

{"a", "b"}, {"a", "a", "b"}, set(("a", "b", "b"))

{"a" : 1, "b" : 2}, dict((("a", 1), ("b", 2)))

• True, False and Null

• Numbers (int and float)

• Strings

• Tuples

• Lists

• Sets

• Dictionaries

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

STRINGS

10

s = "Hello World "

print(s[0])
print(s[:-2])
print(s[1:3])

print(s.strip() + "!")
print(s.lower())
print(s.replace("ll", "j").replace("o", "").replace("W", "w"))

print(s == 'Hello World ')

s += "!"
print(s * 2)
print("World" in s)

print(s.split())
print('-'.join(["Hello", "World!"]))

print("Hello {you}, my name is {me}".format(you="A", me="M"))

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

STRINGS

10

s = "Hello World "

print(s[0])
print(s[:-2])
print(s[1:3])

print(s.strip() + "!")
print(s.lower())
print(s.replace("ll", "j").replace("o", "").replace("W", "w"))

print(s == 'Hello World ')

s += "!"
print(s * 2)
print("World" in s)

print(s.split())
print('-'.join(["Hello", "World!"]))

print("Hello {you}, my name is {me}".format(you="A", me="M"))

H
Hello Worl
el

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

STRINGS

10

s = "Hello World "

print(s[0])
print(s[:-2])
print(s[1:3])

print(s.strip() + "!")
print(s.lower())
print(s.replace("ll", "j").replace("o", "").replace("W", "w"))

print(s == 'Hello World ')

s += "!"
print(s * 2)
print("World" in s)

print(s.split())
print('-'.join(["Hello", "World!"]))

print("Hello {you}, my name is {me}".format(you="A", me="M"))

H
Hello Worl
el

Hello World!
hello world
Hej wrld

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

STRINGS

10

s = "Hello World "

print(s[0])
print(s[:-2])
print(s[1:3])

print(s.strip() + "!")
print(s.lower())
print(s.replace("ll", "j").replace("o", "").replace("W", "w"))

print(s == 'Hello World ')

s += "!"
print(s * 2)
print("World" in s)

print(s.split())
print('-'.join(["Hello", "World!"]))

print("Hello {you}, my name is {me}".format(you="A", me="M"))

H
Hello Worl
el

True

Hello World !Hello World !
True

['Hello', ‚World', '!']
Hello-World!

Hello World!
hello world
Hej wrld

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

STRINGS

10

s = "Hello World "

print(s[0])
print(s[:-2])
print(s[1:3])

print(s.strip() + "!")
print(s.lower())
print(s.replace("ll", "j").replace("o", "").replace("W", "w"))

print(s == 'Hello World ')

s += "!"
print(s * 2)
print("World" in s)

print(s.split())
print('-'.join(["Hello", "World!"]))

print("Hello {you}, my name is {me}".format(you="A", me="M"))

H
Hello Worl
el

True

Hello World !Hello World !
True

['Hello', ‚World', '!']
Hello-World!

Hello A, my name is M

Hello World!
hello world
Hej wrld

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

STRINGS

10

s = "Hello World "

print(s[0])
print(s[:-2])
print(s[1:3])

print(s.strip() + "!")
print(s.lower())
print(s.replace("ll", "j").replace("o", "").replace("W", "w"))

print(s == 'Hello World ')

s += "!"
print(s * 2)
print("World" in s)

print(s.split())
print('-'.join(["Hello", "World!"]))

print("Hello {you}, my name is {me}".format(you="A", me="M"))

H
Hello Worl
el

True

Hello World !Hello World !
True

['Hello', ‚World', '!']
Hello-World!

Hello A, my name is M

Hello World!
hello world
Hej wrld

Use for any kind of texts and unknown
input.

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LISTS

11

lis1 = list((1, 2, 3))
lis2 = [5, 6, 7]

print(lis1[:-1])
print(lis1 + lis2)

lis1.append(False)
lis1.extend(lis2)
print(lis1)

print(sorted(lis1),
 lis1.sort(), lis1)

for i, v in enumerate(lis2):
 print(i, v)

lis3 = [i for i in range(10)]
print(lis3)

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LISTS

11

lis1 = list((1, 2, 3))
lis2 = [5, 6, 7]

print(lis1[:-1])
print(lis1 + lis2)

lis1.append(False)
lis1.extend(lis2)
print(lis1)

print(sorted(lis1),
 lis1.sort(), lis1)

for i, v in enumerate(lis2):
 print(i, v)

lis3 = [i for i in range(10)]
print(lis3)

[1, 2]
[1, 2, 3, 5, 6, 7]

[1, 2, 3, False, 5, 6, 7]

[False, 1, 2, 3, 5, 6, 7]
 None [False, 1, 2, 3, 5, 6, 7]

0 5
1 6
2 7

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

LISTS

11

lis1 = list((1, 2, 3))
lis2 = [5, 6, 7]

print(lis1[:-1])
print(lis1 + lis2)

lis1.append(False)
lis1.extend(lis2)
print(lis1)

print(sorted(lis1),
 lis1.sort(), lis1)

for i, v in enumerate(lis2):
 print(i, v)

lis3 = [i for i in range(10)]
print(lis3)

[1, 2]
[1, 2, 3, 5, 6, 7]

[1, 2, 3, False, 5, 6, 7]

[False, 1, 2, 3, 5, 6, 7]
 None [False, 1, 2, 3, 5, 6, 7]

0 5
1 6
2 7

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Use for ordered
collections of data
items, do not use
for fast inclusion
checks or unique
data → use set or

dictionary instead.

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DICTIONARIES

12

dic = {"a" : 1, "b" : 2}

print(dic["a"])
dic["c"] = 3
print(dic)

del dic["b"]
print("b" in dic, "b" not in dic)

for k in dic: # dic.keys()
 print(k)

for v in dic.values():
 print(v)

for k, v in dic.items():
 print(k, v)

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DICTIONARIES

12

dic = {"a" : 1, "b" : 2}

print(dic["a"])
dic["c"] = 3
print(dic)

del dic["b"]
print("b" in dic, "b" not in dic)

for k in dic: # dic.keys()
 print(k)

for v in dic.values():
 print(v)

for k, v in dic.items():
 print(k, v)

1

{'a': 1, 'b': 2, 'c': 3}

False True

a
c

1
3

a 1
c 3

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

DICTIONARIES

12

dic = {"a" : 1, "b" : 2}

print(dic["a"])
dic["c"] = 3
print(dic)

del dic["b"]
print("b" in dic, "b" not in dic)

for k in dic: # dic.keys()
 print(k)

for v in dic.values():
 print(v)

for k, v in dic.items():
 print(k, v)

1

{'a': 1, 'b': 2, 'c': 3}

False True

a
c

1
3

a 1
c 3

Use for key => value data items.
The keys are unique per

dictionary and the values can be
any type of data.

Fast check if key contained, fast
access of values via key.

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

TUPLES

13

tup1 = (1, 2, 3)
tup2 = 5, 6, 7

print(tup1[0])
print(tup2)

a, b = "A", "B"
print(a, b)

for (i, j) in ((1,"a"), (2, "b"), (3, "c")):
 print(i, j)

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

TUPLES

13

tup1 = (1, 2, 3)
tup2 = 5, 6, 7

print(tup1[0])
print(tup2)

a, b = "A", "B"
print(a, b)

for (i, j) in ((1,"a"), (2, "b"), (3, "c")):
 print(i, j)

1
(5, 6, 7)

A B

1 a
2 b
3 c

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

TUPLES

13

tup1 = (1, 2, 3)
tup2 = 5, 6, 7

print(tup1[0])
print(tup2)

a, b = "A", "B"
print(a, b)

for (i, j) in ((1,"a"), (2, "b"), (3, "c")):
 print(i, j)

Tuples cannot be modified or
extended! Otherwise, similar to list.

1
(5, 6, 7)

A B

1 a
2 b
3 c

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

FUNCTION DEFINITIONS

14

def add_or_multiply(x, y, add=True):

 if add:
 return x + y
 else:
 return x * y

print(add_or_multiply(1, 2))
print(add_or_multiply(1, 2, False))

print(add_or_multiply(x=5, y=6, add=True))
print(add_or_multiply(x=5, add=False, y=6))

add_or_multiply = "Hallo"
add_or_multiply(1, 2)

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

FUNCTION DEFINITIONS

14

def add_or_multiply(x, y, add=True):

 if add:
 return x + y
 else:
 return x * y

print(add_or_multiply(1, 2))
print(add_or_multiply(1, 2, False))

print(add_or_multiply(x=5, y=6, add=True))
print(add_or_multiply(x=5, add=False, y=6))

add_or_multiply = "Hallo"
add_or_multiply(1, 2)

3
2

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

FUNCTION DEFINITIONS

14

def add_or_multiply(x, y, add=True):

 if add:
 return x + y
 else:
 return x * y

print(add_or_multiply(1, 2))
print(add_or_multiply(1, 2, False))

print(add_or_multiply(x=5, y=6, add=True))
print(add_or_multiply(x=5, add=False, y=6))

add_or_multiply = "Hallo"
add_or_multiply(1, 2)

3
2

11
30

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

FUNCTION DEFINITIONS

14

def add_or_multiply(x, y, add=True):

 if add:
 return x + y
 else:
 return x * y

print(add_or_multiply(1, 2))
print(add_or_multiply(1, 2, False))

print(add_or_multiply(x=5, y=6, add=True))
print(add_or_multiply(x=5, add=False, y=6))

add_or_multiply = "Hallo"
add_or_multiply(1, 2)

3
2

11
30

Traceback:
 add_or_multiply(1,2)
TypeError: 'str' object is not callable

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

HELPFUL FUNCTIONS

15

Strings

s.strip() Removes whitespace (spaces) at the beginning and end of a string.
s.lower() Converts all characters in a string to their lowercase version.
s.replace(x, y) Replaces all occurrences of x with y in a string.
s.split(x) Splits a string at each occurrence of x and creates a list.
s.join(x) Joins the elements of the list x into a string with s as the separator.

Lists l.append(x) Adds a new element x to a list.

Dictionaries d.items() Iterates over all elements of a dictionary as tuples of key and value.
d.values() Iterates over all values of a dictionary.

Iteration
enumerate(l) Enumerates all elements of a list, outputting tuples consisting of a run index and value.
zip(l1, l2) Iterates over two lists simultaneously and outputs the values with the same index together.
range(x) Allows iteration from 0 to x-1.

Types

str(x) Converts x to a string.
int(x) Converts x to an integer (rounding down).
float(x) Converts x to a floating point number.
type(x) Determines the type of x.

General
print(x) Outputs x.
open(f, r) Opens a file f with permission r (“r” for read, “w” for write).
len(x) Determines the length of x.

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

AN EXAMPLE

16

def extract_numbers(l):
 l = l.strip()
 numbers = []
 for p in l.split(","):
 if p.strip().isnumeric():
 numbers.append(int(p))
 return numbers

def build_csv(nl):
 csv = ""
 for line in nl:
 csv += ','.join([
 str(n) for n in line
]) + "\n"
 return csv

f = open("name.csv", "r")
lines = f.readlines()
f.close()

new_lines = []
for line in lines:
 numbers = extract_numbers(line)
 new_lines.append([n ** 2 for n in numbers])

print(build_csv(new_lines))

A, Otto, 12, 2045
B, Heinz, 13, 5689
C, Franz, 89, 38594
D, Ernst, 09, 2830

name.csv

144,4182025
169,32364721
7921,1489496836
81,8008900

Import CSV file, filter out all numbers
line by line, and export only the
numbers as CSV.

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

JAVASCRIPT OBJECT NOTATION (JSON)

17

import json

d = {
 "a" : 1,
 "b" : "B",
 "c" : [1.2, 1.3, 1.4],
 "e" : None
}

json_str = json.dumps(d, indent=2)
print(json_str)

d_ = json.loads(json_str)
print(d_)

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

JAVASCRIPT OBJECT NOTATION (JSON)

17

import json

d = {
 "a" : 1,
 "b" : "B",
 "c" : [1.2, 1.3, 1.4],
 "e" : None
}

json_str = json.dumps(d, indent=2)
print(json_str)

d_ = json.loads(json_str)
print(d_)

{
 "a": 1,
 "b": "B",
 "c": [
 1.2,
 1.3,
 1.4
],
 "e": null
}

AARHUS UNIVERSITY
DEPARTMENT OF MANAGEMENT

Magnus Bender

JAVASCRIPT OBJECT NOTATION (JSON)

17

import json

d = {
 "a" : 1,
 "b" : "B",
 "c" : [1.2, 1.3, 1.4],
 "e" : None
}

json_str = json.dumps(d, indent=2)
print(json_str)

d_ = json.loads(json_str)
print(d_)

{
 "a": 1,
 "b": "B",
 "c": [
 1.2,
 1.3,
 1.4
],
 "e": null
}

{'a': 1, 'b': 'B', 'c': [1.2, 1.3, 1.4], 'e': None}

