FROM MINIMAL DATA TO TEXT UNDERSTANDING

MAGNUS BENDER¹, MARCEL GEHRKE¹, TANYA BRAUN²

AGENDA

- I. Introduction to Semantic Systems [Tanya]
 - Components and context of semantic systems
 - Learning & inference tasks
 - Existing formalisms
- 2. Supervised Learning [Marcel]
- 3. Unsupervised and Relational Learning [Magnus]
- 4. Summary [Tanya]

HELPING HUMANS: TEXT UNDERSTANDING

Picture by Eva Wilden, in: Tamil Satellite Stanzas: Genres and Distribution

HELPING HUMANS: TEXT UNDERSTANDING

- Tamil poems
 - Original poem
 - + Transcript
 - + Translation
 - Credit: Eva Wilden

pāra+ tolkāppiyamum pattupāţţum kaliyum āra+ kuruntokaiyuļ aiññānkum – cāra+ tiru+ taku mā muni cey cintāmaniyum virutti naccinārkkiniyamē.

On the weighty Tolkāppiyam and the Pattuppāṭṭu and Kali and on five [times] four in the ornamental Kuruntokai and on the essential Cintāmaṇi made by the brilliant great sage (Tirutakkatēvar) [are] the elaborate commentaries [attributed] to Naccinārkkiniyar.

- Interestingly, Tamil poems sometimes consist of
 - Poem itself
 - Comments (annotations) for specific words in the poem added inline, possibly centuries later

If you do not know the original poem, poem and inline annotation are not easily distinguishable.

HELPING HUMANS: TEXT UNDERSTANDING

- Setting:
 - Set of documents (corpus)
 - Each document contains main text (content) and inline comments (annotation) for preceding words
- Goal: Text understanding
 - Help human to identify which parts of original text are annotation
- Task: Classification
 - Classify which words are content and which are annotation
- Problem: Minimal data
 - Set of manually annotated poems very limited → 91 poems

COMPONENTS AND CONTEXT

SEMANTIC SYSTEMS

THE SETTING: A CORPUS OF DOCUMENTS AND ANNOTATIONS

- Corpus = set of documents \mathcal{D}
- Each document d has a set of annotations g(d)
 - Annotation
 ≜ subjective content description (SCD)
 - Reflect the context of the purpose of the corpus
- Types of SCDs can be manifold
 - Figures, notes, references, ...

- Each SCD associated with words at specific locations throughout the corpus
 - Assumption: Words closer to location → influence higher

THE LARGER CONTEXT

*requires in-time answers/actions

MAKING THE JUMP TO ARTIFICIAL INTELLIGENCE

- Agent: Something that perceives its environment through sensors and acts through actuators
 - E.g., a document retrieval agent
 - Sensors: User interface to receive query documents
 - Actuators: User interface for returning documents
 - E.g., a decision support system
 - Sensors: e.g., interfaces for GPS data
 - Actuators: User interface for presenting suggested decisions / actions

HUMAN-AWARE ARTIFICIAL INTELLIGENCE

- Agent acting in collaboration with or on behalf of a human
 - Also considers representation of
 - The human's view of the world
 - The human's belief of the agent's view of the world
 - Why?
 - Anticipate human behaviour
 - Conform to expectations or explain differing behaviour

Modelling humans in the loop makes one thing very clear:
Ethics and Al are intricately linked!

SEMANTIC SYSTEMS

FROM MINIMAL DATA TO TEXT UNDERSTANDING

TASKS: USER PERSPECTIVE

Information retrieval

- Depending on the system and its purpose, e.g.,
 - Identify inline annotations of a given document
 - Find fitting documents → document retrieval
 - To a given document or search string
 - And possibly points of interests in such documents
 - Get an overview (\rightarrow explore) in terms of, e.g.,
 - Summary
 - Topics
 - Actors, objects, connections among them
- From system perspective: External task

TASKS: SYSTEM PERSPECTIVE

- Information retrieval can often be formulated as some form of classification
 - Part of text annotation or not?
 - Document relevant or not to a given search?
 - Which parts of a document are relevant?
 - To a given search string
 - For a summary
 - Exploration can include classification tasks but may also require different techniques
- How to realise a task depends, among other things, on which information is used from the documents

TASKS: SYSTEM PERSPECTIVE

- E.g., for document retrieval given a document:
 - Topics: Provide documents with similar topics
 - Named entities and relations between them: Provide documents with matching entities
 - Embedding spaces: Provide documents that map to a similar position in an embedding space
- E.g., for exploration of a corpus:
 - Topics: Provide topic and word distributions of a corpus
 - Named entities and relations between them: Provide a knowledge graph
 - Language models: Provide a summary of texts

TASKS: SYSTEM PERSPECTIVE

Another important aspect, in small-scale corpora:

Well-rounded corpus needed for high-quality information retrieval

- → Corpus enrichment to extend corpus with documents that provide added value in task context
 - From system perspective: Internal task
 - Again, a classification problem
 - Input: new document d, corpus \mathcal{D}
 - Possible classes?
 - Quasi-copy, revision, extension, unrelated, complementary?

THE PROBLEM OF MINIMAL DATA & TASK-SPECIFIC CORPORA

- Number of documents in the low hundreds.
 - Not enough data for training / adapting LLMs
 - Less support in NLP tools or no pre-trained tools for less common languages
- Annotations of various kinds → can help connect documents, supplement content with information (added value)
 - Citations, entities; (Inline) text, translations, transcriptions
 - Figures, pictures, sensor data
 - ❖ Possibly, only manual → expensive
 - Possibly, no annotations at all → no added value
- User-supplied corpora need to be handled on demand in a reasonable amount of time

FORMALISMS

SEMANTIC SYSTEMS

WAY BACK WHEN: TF.IDF & LATENT SEMANTIC INDEXING (LSI)

- Documents inhabit a vector space
- tf.idf (term frequency x inverse document frequency)
 - tf: how often occurs a word in a docment
 - df: in how many documents does the word occur
 - idf: $\log(n/df)$, n number of documents in corpus
 - Document: Vector of tf.idf weights over the vocabulary
 - Corpus: Matrix of document vectors
- LSI (dimension reduction using singular value decomposition)
 - Reduce matrix to m dimensions with largest Eigen values
 - Example with m=2 and corpus $C=\{d_1,d_2,d_3\}$

WAY BACK WHEN: TF.IDF & LATENT SEMANTIC INDEXING (LSI)

- IR given a search document / string d':
 - Return top-k documents closest to d'
 - Compute a (reduced) vector for d' and
 - Find the top-k closest vectors using cosine similarity:

$$sim(d, d') = \frac{\vec{d} \cdot \vec{d}'}{|\vec{d}| \cdot |\vec{d}'|}$$

- Dot product
- Example with m=2 and corpus $C=\{d_1,d_2,d_3\}$
 - Query: "gold silver truck"
- Corpus enrichment?

TOPIC MODELS

- Assumption: Topics "cause" the words in a document
- Latent Dirichlet Allocation: Generative topic model
 - Each topic has a word distribution φ_k
 - Drawn from a Dirichlet prior, parameterised by β
 - Each document d_i has a topic distribution θ_i
 - Drawn from a Dirichlet prior, parameterised by α
 - Each word $w_{i,j}$ has a topic $z_{i,j}$
 - Drawn from θ_i
 - Dirichlet distribution: distribution over distributions
 - Larger β , $\alpha \rightarrow$ more uniform distributions

- Learning algorithm to fit parameters
- Document retrieval:
 - Estimate topic distribution for new document
 - Provide documents from corpus with similar topic distribution (cosine similarity)
- Corpus enrichment?

TOPIC MODELS

Topics

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions and assignments

Figure: David M. Blei

- Extensions, a selection
 - Hierarchical Dirichlet process to model topic hierarchy (Teh et al., 2006)
 - Dynamic topic modelling to model evolution over time (Blei & Lafferty, 2006)
 - Relational topic model (Chang & Blei, 2009)
 - **Extension to entities** (Kuhr et al., 2021)
- Applications, a selection
 - Social networks (Cha & Cho 2012)
 - Tweets (Negara et al., 2019)
 - Digital humanities (Redzuan et al, 2023)

NAMED ENTITIES AND KNOWLEDGE GRAPHS

- Documents are about identifiable items, i.e., named entities
- Named entity recognition: Automatically extract named entities from text
 - E.g., OpenIE
 - https://stanfordnlp.github.io/CoreNLP/openie.html
 - Problem of named entity matching, entity linking
- SPO triples (subject, predicate, object)
 - Entities form relations
 - Arranged in a graph → Knowledge graph
 - Ontologies as schema layer → Logical inference

E.g., RDF graph

https://www.w3.org/RDF/https://www.w3.org/TR/rdf-sparql-query/

Query language: SPARQL

NAMED ENTITIES AND KNOWLEDGE GRAPHS

- Possible to set up entity types in a type hierarchy
- Link entities / SPO triples to points in document
- Information retrieval
 - Query graph for relations
 - Walk graph for exploration
 - Find points of interest through links to text
- Corpus enrichment?
 - Using hierarchy?

SUBJECTIVE CONTENT DESCRIPTIONS (SCDs)

- Assume annotations "cause" words in a document
- Annotations describe content.
 - Subjective to a user / (implicit or explicit) task, at specific points in document
- Form a vector representation of annotations
 - SCD: Associated with words at specific locations
 - SCD-word matrix
 - For each SCD: Probability distribution over vocabulary
 - Which words occur around an SCD
 - Compare: Document-word matrices in LSI
 - Compare: Topic-word distributions in LDA

SUBJECTIVE CONTENT DESCRIPTIONS (SCDs)

- Information retrieval:
 - Estimate SCD-word distribution for new document
 - Find similar documents through cosine similarity of SCD-word distributions
 - Return points of interest by locating similar SCDs
- Discussion: Corpus enrichment?

FROM MINIMAL DATA TO TEXT UNDERSTANDING Semantic Systems 25

(LARGE) LANGUAGE MODELS

- Predictive probabilistic modelling of language:
 Predict the next word / sentence → Imitate
- Long history of models
 - Example systems: ElMo, BERT, GPT, ChatGPT, ...
 (Peters et al., 2018; Devlin et al., 2019; Radford et al., 2018; OpenAl, 2022)
 - Transformer-based models

(Vaswani et al., 2017)

- Encoder-decoder architecture
- Attention mechanism
- Figure: Transformer architecture, taken from an article by Vaswani et al. (2017)

(LARGE) LANGUAGE MODELS

- Information retrieval
 - Cue: Prompt engineering
 - Question answering
 - Summarisation
- Fine-tune a model: adapt to a specific context

Figure taken from a talk by Malte Schilling

https://www.dropbox.com/s/nsenp948uc93I5w/schilling_2023_06_LLM_Mechanisms.pdf?dl=0

INTERIM SUMMARY

- Setting: Corpus of possibly annotated documents
- Tasks:
 - User-driven: Information retrieval
 - Internal: Corpus enrichment
- Formalisms
 - Vector space representation: tf.idf and LSI
 - Topic modelling: LDA
 - Named entities and knowledge graphs
 - SCD-word matrix
 - (Large) language models

- Few documents
- Various types of annotations

AGENDA

- I. Introduction to Semantic Systems [Tanya]
- 2. Supervised Learning [Marcel]
 - Subjective content descriptions
 - Corpus enrichment
 - Inline annotations (T)
- 3. Unsupervised and Relational Learning [Magnus]
- 4. Summary [Tanya]

ROM MINIMAL DATA TO TEXT UNDERSTANDING Semantic Systems

- Blei et al. (2003)
 David M. Blei, Andrew Y. Ng, and Michael I. Jordan: Latent Dirichlet Allocation. In Journal of Machine Learning Research, 2003.
- Blei & Laffert (2006)
 David M. Blei and John D. Lafferty: Dynamic Topic Models. In ICML-06 Proceedings of the 23rd International Conference on Machine Learning, 2006.
- Cha & Cho (2012)
 Youngchul Cha and Junghoo Cho: Social-network analysis Using Topic Models. In SIGIR-12 Proceedings of the 35th Annual Special Interest Group on Information Retrieval Conference, 2012.
- Chang & Blei (2009)
 Jonathan Chang and David M. Blei: Relational Topic Models for Document Networks. In AISTATS-09 Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, 2009.

- Deerwester et al. (1990)
 Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, and Richard Harshman: Indexing by Latent Semantic Analysis. In Journal of the American Society for Information Science, 1990.
- Devlin et al. (2019)
 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT-19 Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019.
- Kuhr et al. (2019)
 Felix Kuhr, Tanya B, Magnus Bender, and Ralf Möller: To Extend or Not to Extend? Context-specific Corpus Enrichment. In AJCAI-2019 Proceedings of the 32nd Australasian Joint Conference on Artificial Intelligence, 2019.
- Kuhr et al. (2021)
 Felix Kuhr, Matthis Lichtenberger, Tanya B, and Ralf Möller: Enhancing Relational Topic Models with Named Entity Induced Links. In ICSC-21 Proceedings of 15th IEEE International Conference on Semantic Computing, 2021.

Radford et al., 2018; OpenAl, 2022

- Negara et al. (2019)
 Edi Surya Negara, Dendi Triadi, and Ria Andryani: Topic Modelling Twitter Data with Latent Dirichlet Allocation Method. In ICECOS-19 Proceedings of the 2019 International Conference on Electrical Engineering and Computer Science, 2019.
- OpenAl (2022)
 OpenAl: Introducing ChatGPT. In Blog post, https://openai.com/blog/chatgpt, 2022.
- Peters et al. (2018)
 Matthew E. Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer: Deep Contextualized Word Representations. In NAACL-HLT-18 Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018.
- Radford et al. (2018)
 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever: Improving Language Understanding by Generative Pre-Training. Technical report, 2018.

- Redzuan et al. (2023)
 Nadja Redzuan, Marcel Gehrke, Ralf Möller, and Tanya B: On Domain-specific Topic Modelling Using the Case of a Humanities Journal. In CHAI-23 Proceedings of the 3rd Workshop on Humanities-Centred AI, 2023.
- Spärck Jones (1972)
 Karen Spärck Jones: A Statistical Interpretation of Term Specificity and Its Application in Retrieval. In Journal of Documentation, 1972.
- Teh et al. (2006)
 Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei: Hierarchical Dirichlet Process. In Journal of the American Statistical Society, 2006.
- Vasvani et al. (2017)
 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin: Attention Is All You Need. In NeurIPS-17 Proceedings of the 31st Conference on Neural Information Processing Systems, 2017.